
J. Chem. Phys. 153, 125102 (2020); https://doi.org/10.1063/5.0019088 153, 125102

© 2020 Author(s).

A workflow for exploring ligand
dissociation from a macromolecule:
Efficient random acceleration molecular
dynamics simulation and interaction
fingerprint analysis of ligand trajectories
Cite as: J. Chem. Phys. 153, 125102 (2020); https://doi.org/10.1063/5.0019088
Submitted: 19 June 2020 . Accepted: 31 August 2020 . Published Online: 25 September 2020

Daria B. Kokh , Bernd Doser , Stefan Richter , Fabian Ormersbach, Xingyi Cheng , and Rebecca C. Wade

COLLECTIONS

Paper published as part of the special topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,

Force fields, and Applications

ARTICLES YOU MAY BE INTERESTED IN

OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital
features
The Journal of Chemical Physics 153, 124111 (2020); https://doi.org/10.1063/5.0021955

Molecular dynamics simulations of ethanol permeation through single and double-lipid
bilayers
The Journal of Chemical Physics 153, 125101 (2020); https://doi.org/10.1063/5.0013430

A combination of machine learning and infrequent metadynamics to efficiently predict
kinetic rates, transition states, and molecular determinants of drug dissociation from G
protein-coupled receptors
The Journal of Chemical Physics 153, 124105 (2020); https://doi.org/10.1063/5.0019100

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519992853&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a6e1cecbc242d3b912549e1a9893d52b6202f329&location=
https://doi.org/10.1063/5.0019088
https://doi.org/10.1063/5.0019088
https://aip.scitation.org/author/Kokh%2C+Daria+B
http://orcid.org/0000-0002-4687-6572
https://aip.scitation.org/author/Doser%2C+Bernd
http://orcid.org/0000-0002-3443-5913
https://aip.scitation.org/author/Richter%2C+Stefan
http://orcid.org/0000-0001-5373-8381
https://aip.scitation.org/author/Ormersbach%2C+Fabian
https://aip.scitation.org/author/Cheng%2C+Xingyi
http://orcid.org/0000-0002-2519-7490
https://aip.scitation.org/author/Wade%2C+Rebecca+C
http://orcid.org/0000-0001-5951-8670
/topic/special-collections/clmd2020?SeriesKey=jcp
/topic/special-collections/clmd2020?SeriesKey=jcp
https://doi.org/10.1063/5.0019088
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0019088
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0019088&domain=aip.scitation.org&date_stamp=2020-09-25
https://aip.scitation.org/doi/10.1063/5.0021955
https://aip.scitation.org/doi/10.1063/5.0021955
https://doi.org/10.1063/5.0021955
https://aip.scitation.org/doi/10.1063/5.0013430
https://aip.scitation.org/doi/10.1063/5.0013430
https://doi.org/10.1063/5.0013430
https://aip.scitation.org/doi/10.1063/5.0019100
https://aip.scitation.org/doi/10.1063/5.0019100
https://aip.scitation.org/doi/10.1063/5.0019100
https://doi.org/10.1063/5.0019100


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

A workflow for exploring ligand dissociation from
a macromolecule: Efficient random acceleration
molecular dynamics simulation and interaction
fingerprint analysis of ligand trajectories

Cite as: J. Chem. Phys. 153, 125102 (2020); doi: 10.1063/5.0019088
Submitted: 19 June 2020 • Accepted: 31 August 2020 •
Published Online: 25 September 2020

Daria B. Kokh,1,a) Bernd Doser,2 Stefan Richter,1 Fabian Ormersbach,1 Xingyi Cheng,1,3

and Rebecca C. Wade1,4,5,a)

AFFILIATIONS
1 Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35,
69118 Heidelberg, Germany

2Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
3Molecular Biosciences, Heidelberg University, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
4Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Im Neuenheimer Feld 282,
69120 Heidelberg, Germany

5Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, Heidelberg, Germany

Note: This paper is part of the JCP Special Topic on Classical Molecular Dynamics (MD) Simulations: Codes, Algorithms,
Force Fields, and Applications.
a)Authors to whom correspondence should be addressed: Daria.Kokh@h-its.org and Rebecca.Wade@h-its.org

ABSTRACT
The dissociation of ligands from proteins and other biomacromolecules occurs over a wide range of timescales. For most pharmaceutically
relevant inhibitors, these timescales are far beyond those that are accessible by conventional molecular dynamics (MD) simulation. Conse-
quently, to explore ligand egress mechanisms and compute dissociation rates, it is necessary to enhance the sampling of ligand unbinding.
Random Acceleration MD (RAMD) is a simple method to enhance ligand egress from a macromolecular binding site, which enables the
exploration of ligand egress routes without prior knowledge of the reaction coordinates. Furthermore, the τRAMD procedure can be used to
compute the relative residence times of ligands. When combined with a machine-learning analysis of protein–ligand interaction fingerprints
(IFPs), molecular features that affect ligand unbinding kinetics can be identified. Here, we describe the implementation of RAMD in GRO-
MACS 2020, which provides significantly improved computational performance, with scaling to large molecular systems. For the automated
analysis of RAMD results, we developed MD-IFP, a set of tools for the generation of IFPs along unbinding trajectories and for their use in
the exploration of ligand dynamics. We demonstrate that the analysis of ligand dissociation trajectories by mapping them onto the IFP space
enables the characterization of ligand dissociation routes and metastable states. The combined implementation of RAMD and MD-IFP pro-
vides a computationally efficient and freely available workflow that can be applied to hundreds of compounds in a reasonable computational
time and will facilitate the use of τRAMD in drug design.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0019088., s

I. INTRODUCTION

Many crystal structures of bound ligand–protein complexes
reveal that small molecules are often positioned in a cavity that is

completely or partially buried in the protein, where no clear entrance
or exit route can be observed. This suggests that macromolecu-
lar conformational rearrangements associated with the opening and
closing of entrance/exit channels or tunnels are required for ligand
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binding and unbinding. While such rearrangements are dependent
on the mobility of the macromolecule itself, the ligand may influence
this motion, which results, in particular, in variations in the binding
kinetics as well as in the binding pocket shape when different ligands
bind. Characterization of the dissociation of protein–ligand com-
plexes can give insights into binding and unbinding mechanisms
and support the design of new therapeutic agents aimed at modu-
lating the protein function.1,2 Besides, kinetic parameters, such as
the unbinding rate, can have a critical impact on the in vivo drug
efficacy. The physical process of ligand unbinding has proven diffi-
cult to elucidate as it usually occurs on a timescale that is beyond the
simulation times feasible in conventional molecular dynamics (MD)
simulations. Among the different strategies for reducing the com-
putational time required to observe ligand unbinding events (such
as metadynamics3–6 or weighted ensemble7,8 simulations), a number
of nonequilibrium MD simulation methods have been found to be
computationally efficient and to enable the estimation of the kinetics
of unbinding processes and the elucidation of the features governing
unbinding.9–15

One approach is to facilitate ligand unbinding from a bind-
ing site in a macromolecule by applying an additional small, ran-
domly oriented force to the center of mass (COM) of the ligand
during otherwise conventional MD simulations of a solvated
protein–ligand complex. This method, originally called random
expulsion molecular dynamics16 and later referred to as Random
Acceleration MD (RAMD) because of its more general scope of
application, was designed to identify possible ligand egress routes
from a buried binding site. In this approach, the magnitude of the
additional ligand force or acceleration is kept constant during the
simulation, while the orientation of the force or acceleration is cho-
sen randomly. The displacement of the ligand center of mass relative
to the starting position is checked after defined time intervals (usu-
ally 100 fs), and either a new force direction is chosen randomly if
the ligand displacement is below a threshold distance or the force
direction is kept for the next time interval if the ligand displacement
is above the threshold distance. This process is repeated until the
ligand displacement exceeds a predefined distance from its starting
position, at which point it is considered to have dissociated from the
macromolecule.

RAMD was first implemented in the ARGOS program16–18 and
applied to explore the dissociation routes of a set of substrates of
cytochrome P450 enzymes from their buried active sites.16,19–21 The
validity of the ligand routes from cytochrome P450cam explored
by RAMD in Ref. 16 has been shown later in unbiased MD sim-
ulations (57 μs in total) of substrate binding.22 The method has
since been used in multiple studies, including its implementation in
AMBER823 for studying cytochrome P450 enzymes21 and G-protein
coupled receptors (GPCRs) (rhodopsin24 and β2-adrenergic recep-
tor25), in GROMACS26 for studying ligand dissociation from the
liver fatty acid binding protein,27 and in CHARMM28 for unbind-
ing simulations of retinoic acid from the retinoic acid receptor.21

The need to implement RAMD in a way that was sustainable in
constantly upgraded MD software became apparent. This problem
was solved by the implementation of RAMD as a Tcl script wrap-
ping the NAMD29 package in Refs. 30 and 31. The NAMD imple-
mentation of RAMD hardly needed any additional adaptation even
though the NAMD package was constantly developed and updated.
However, this implementation has shown limited performance due

to the intrinsic bottleneck in its parallelization, as after each MD time
interval to assess ligand motion and decide on changing the force
direction, the simulation has to be paused. This limiting step hinders
the application of the method to larger systems, such as membrane
proteins or protein complexes, whose simulation speed has partic-
ularly benefited from recent improvements in the efficiency of MD
simulation code parallelization.

Recently, the NAMD implementation of RAMD was further
revised by reverting to using a force instead of an acceleration as
the input parameter with the aim of estimating relative ligand resi-
dence times.32 Employing a constant force magnitude in simulations
for a series of different ligands ensures the independence of the per-
turbation effect on the ligand mass. In this case, the residence times
obtained for different compounds can be compared. For this pur-
pose, the time required for the ligand to leave the binding pocket
is computed in multiple RAMD dissociation trajectories starting
from several different snapshots, i.e., coordinates and velocities,
from MD equilibration runs. The dissociation times are then used
to derive relative residence times. This protocol, τRAMD, was eval-
uated on more than 90 inhibitors of heat shock protein 90 (HSP90)
and showed a good correlation between computed relative residence
times and experimental data.32,33 In Ref. 33, it was also demonstrated
that the simulated dissociation trajectory can be further analyzed
to decipher the molecular determinants that affect ligand residence
time by computing and statistically analyzing protein–ligand inter-
action fingerprints (IFPs) for the parts of the dissociation trajecto-
ries in which the ligands are egressing from the binding site. Each
IFP represents a 3D protein–ligand interaction profile by a binary
vector of interactions (such as hydrogen- or halogen-bonds, aro-
matic stacking, salt bridges, or hydrophobic contacts) defined by the
distance- and angle-thresholds specified for each type of interaction.
In Ref. 33, OpenEye’s OEChem Toolkit34 was employed to compute
IFPs.

In the present paper, we first report a new implementation of
the RAMD method in the GROMACS 2020 MD simulation pack-
age35 as a part of the PULL function. This implementation enables
simulation time to be decreased by more than ten times, depend-
ing on the system size, compared to the NAMD implementation.
We tested the performance of the new implementation on two tar-
get proteins: the N-terminal domain of HSP90, a rather small soluble
protein that has been the subject of a number of studies of ligand dis-
sociation,32,33,36–39 and the muscarinic receptor M2, a GPCR embed-
ded in a lipid bilayer (explored using metadynamics simulations in
Refs. 4 and 40).

Second, we present an open-source software tool set, MD-
IFP, for the computation of protein–ligand IFPs along simulated
MD trajectories. We evaluate the use of MD-IFP on a set of over
40 protein–ligand complexes and then demonstrate its application
to the analysis of RAMD simulations of the complexes of HSP90
with three inhibitors that have different residence times and dis-
tinct binding mechanisms. Although there are several freely avail-
able software tools for the computation of the three-dimensional
structural protein–ligand interaction fingerprints from the coordi-
nates of protein–ligand complexes (in PDB format), such as SPLIF,41

PLIP,42 FLIP,43 and LIGPLOT,44 none of them is, to the best of our
knowledge, designed to be integrated as a part of the automated
protocol for MD trajectory analysis. Furthermore, we developed an
approach to the analysis of the computed IFPs, which enable the
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dissociation routes to be classified and metastable states for ligand
dissociation to be detected. To evaluate the workflow presented in
this manuscript, we compared simulation results of the new proto-
col with the previous τRAMD implementation and evaluated the
accuracy of MD-IFP computations and the ability of the analy-
sis to reveal details of dissociation mechanisms. We show that the
workflow facilitates an effective analysis of the main ligand disso-
ciation pathways from the protein binding site and identification
of the molecular characteristics of metastable states along these
pathways.

II. THEORY
A. The RAMD procedure and the choice of MD
simulation parameters

In the RAMD approach, a small randomly oriented force of
the constant magnitude is applied to the center of mass (COM)
of the ligand during MD simulations. The orientation of the force
is chosen randomly at the beginning and, after a short simulation
interval, its orientation is changed randomly if the displacement of
the ligand COM relative to the protein COM is below a specified
threshold or retained otherwise. Simulation intervals are repeated
until the ligand COM relative to the protein COM reaches a pre-
defined distance, when the ligand is considered to have dissociated
from its binding partner. There are several parameters that have
to be assigned in this procedure: (i) the time interval for checking
the motion of the ligand COM and deciding whether to change the
direction of the random force, (ii) the COM displacement thresh-
old defining whether the direction of the force should be changed,
(iii) the maximum displacement of the COM indicating when sim-
ulations are stopped, and (iv) the magnitude of the force applied.
Additionally, the standard MD simulation parameters, such as the
type of the thermostat (and barostat), must be selected. The relax-
ation time parameter of the thermostat can strongly affect the ligand
dissociation time since it influences the dissipation of the addi-
tional kinetic energy of the ligand due to the external random
force.

The maximum displacement of the ligand COM is defined
by the approximate protein extent from the protein COM plus
5 Å–10 Å. A larger distance is better than a smaller one since, as
soon as the ligand interaction with the protein is lost, its motion is
driven by the external force and becomes very fast and any reason-
able threshold can be reached within a few simulation steps. Altering
any of the other parameters leads to a change in dissociation time,
but their effects can compensate each other. For example, a larger
force magnitude leads to faster dissociation, whereas a longer COM
displacement threshold makes dissociation slower. Thus, there is no
single choice of suitable MD parameters, but in order to be able to
evaluate the relative ligand residence times in the τRAMD proce-
dure,32 the parameters must be kept constant in all the simulations
of a set of ligands that are to be compared. The most obvious crite-
rion for the parameter fitting would be the best agreement of the
simulation results with experimental residence times for a set of
compounds. However, given the limited data on experimental resi-
dence times, it is generally difficult to make an unambiguous choice.
Therefore, in the τRAMD procedure, the values of all parameters
except one, the random force magnitude, are fixed for all systems

studied. Specifically, for simulations using the NAMD software, the
Langevin thermostat and barostat are used, both with a relaxation
time of 1 ps. In the GROMACS implementation, the Nosé–Hoover
thermostat and Parrinello–Rahman barostat are employed (an anal-
ysis of the GROMACS simulation parameters is given in Sec. III A).
The length of the time interval for assessing ligand motion and force
direction is set to 100 fs, and the COM displacement threshold is set
to 0.025 Å. While these parameters can be used for all protein–ligand
systems studied, the magnitude of the random force may need to
be adjusted according to the properties of the protein–ligand com-
plexes studied. It is recommended to use a value of 14 kcal mol−1 Å−1

for the initial simulations and to adjust this value if too few egress
events or too fast dissociations are observed. The criteria for the
choice of the random force magnitude and its adjustment are given
in Ref. 32.

B. τRAMD protocol
The τRAMD protocol was reported in Refs. 32 and 33. Here,

we briefly outline the main steps. A set of starting snapshots (at
least four replicas) is generated using conventional MD simulations,
ideally from several independent trajectories (started with different
coordinates and/or velocities). Each starting snapshot is then used to
generate a set of 15–30 RAMD ligand dissociation trajectories. The
effective residence time for each starting replica is defined by the
dissociation time, corresponding to 50% of the cumulative distribu-
tion function (CDF) for the set of RAMD trajectories, as illustrated
in Fig. 1(a). A bootstrapping procedure (5000 rounds with 80% of
the samples selected randomly) is performed to obtain a residence
time for each replica, τrepl, which should converge to a Gaussian-like
distribution if the sampling is sufficiently large [Fig. 1(b)]. Other-
wise, the number of simulated trajectories for this replica should
be increased. Additionally, a Kolmogorov–Smirnov (KS) test can be
done to assess the sampling quality [Fig. 1(c)]. The final relative res-
idence time, τRAMD, is defined as the mean of τrepl over all replicas
[Fig. 1(d)].

C. Protein–ligand interaction fingerprints to
characterize simulated ligand egress trajectories

We considered the following classes of receptor–ligand inter-
actions to define the IFPs in the MD-IFP analysis: hydrophobic
(HY), aromatic (AR), hydrogen bond donor (HD) or acceptor (HA),
salt bridge (IP/IN), halogen bonds (HL), and water bridge (WB).
The parameters of IFPs computed in each class are summarized in
Table I. The identification of the receptor-ligand IFPs is done using
(i) the RDKit45 software, which identifies the chemical properties
of the ligand using an input ligand mol2 format file, and (ii) the
MDAnalysis46 python library. The latter library enables the reading
of MD trajectories, independently of their format or the program
used to generate them, as well as frame-by-frame operations on the
trajectories (such as computing distances and detecting hydrogen
bonds between selected groups of atoms). Prerequisites for the IFP
calculation are a structure of a protonated protein–ligand complex
and a ligand structure in the mol2 format. For the detection of water
bridges, energy minimization of the structure of the protein–ligand
complex is desirable.

Hydrophobic contacts (HY) were defined between the ligand
hydrophobic carbon atoms as identified by RDKit (carbon atoms
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FIG. 1. Use of the τRAMD method
to compute the residence time of an
inhibitor of HSP90, compound 16, PDB
ID: 5J86 (the NAMD implementation was
used; the same plots for the GROMACS
implementation under different thermo-
stat conditions for all ligands are shown
in Fig. S1): (a) cumulative distribution
function (CDF) for four sets of 15 RAMD
dissociation times, with each trajectory
in a set starting from the same replica
(i.e., the same starting coordinates and
velocities); the effective residence time
obtained from these raw data is indicated
by the red solid line at the time when the
ligand has dissociated in half of the tra-
jectories (1/2 of the maximum value of
the CDF, which is indicated by the red
dashed line); (b) distribution function of
effective residence times obtained after
bootstrapping of the raw data along with
the corresponding Gaussian distribution
(black line); the mean [log(τrepl)] and
half-width are indicated by red lines; (c)
Poisson cumulative distribution function
(PCDF, black line); P = 1 − exp(−t/τrepl)
is compared with the empirical cumula-
tive density function (ECDF, blue points)
obtained from the dissociation probabil-
ity distribution; τrepl is indicated by the
red line; the results of the Kolmogorov–
Smirnov (KS) test are quantified by the
supremum of the distance D between the
Poisson and empirical CDFs (denoted
above the plot); (d) bar plot of the rela-
tive residence times obtained from each
replica. The box extends from the lower
to upper quartile values of the data, the
whiskers show the range of the data,
outliers are shown by points, and the
median and mean are shown by orange
lines and red dashed lines, respectively.
The average residence time in ns com-
puted from all replicas is shown above
the plot.

adjacent to any O or N are not considered as hydrophobic) or
the ligand fluorine and the protein carbon (or sulfur) atoms at an
inter-heavy atom distance of up to 4.0 Å (with an implicit treat-
ment of hydrogen atoms). The definition employed is consistent
with the definition used by the PLIP42 server but different from, for
example, OpenEye’s OEChem Toolkit,34 where all carbon atoms are
considered to be hydrophobic.

Hydrogen bonds (HD/HA) were defined by an acceptor–
hydrogen distance of ≤3.3 Å47 and a donor-hydrogen–acceptor
angle of ≥100○. A smaller angle is usually chosen to make the def-
inition less strict, which is sometimes necessary for the detection of
H-bonds in less accurate crystal structures or in MD trajectories.

The aromatic interaction class (AR) includes π–π interactions
(both plane and edge47,54), cation–π, and amide–π interactions.
Importantly, all aromatic interactions were defined solely on the

basis of interatomic distances. The mutual orientation of the inter-
acting fragments was taken into account implicitly by setting the
minimum number of non-hydrogen contact atoms to be at least 5
(illustrated in Fig. S2). This definition is, therefore, less strict than,
for example, in PLIP42 where, for the detection of π–π stacking, the
angle between the two π rings was defined by a threshold. Never-
theless, with this definition, only a few cases were detected where
the aromatic rings are slightly tilted relative to the in-plane and edge
position (see the method evaluation below).

Halogen bonds include interactions between a polarized halo-
gen (not fluorine) atom (Cl, Br, and I as a donor), sulfur, and a
nucleophile or an aromatic ring (acceptor). The interaction distance
and orientation of this type of bond vary across interaction partners
with a rather wide distribution of the possible values.51 For halogen-
aromatic interactions, we employed an average distance threshold

J. Chem. Phys. 153, 125102 (2020); doi: 10.1063/5.0019088 153, 125102-4

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

TABLE I. Definitions of interactions used to compute IFPs in MD-IFP analysis.

Criteria: maximum
Ligand atom type distancea (in Å)

Type of interaction or atom name Protein atoms or angle (in deg)

HY Hydrophobicb Hydrophobic or fluorine S of MET or CYS, carbons except for
CG in ASN ASP; CD in GLU, GLN
ARG; CZ in TYR ARG; CB in SER
THR; CE in LYS; C in backbone

4.047

IP Salt bridges Pos. ionizable OE∗ OD∗ of ASP GLU 4.548

IN Salt bridges Neg. ionizable NH∗ NZ in ARG LYS and HD HE
in HI2

AR π-stackingc Aromatic Atoms CZ∗ CD∗ CE∗ CG∗ CH∗

NE∗ ND∗ in PHE TRP TYR HIS
HI2 HIE HIDc

5.547

Cation-πd Pos. ionizable Atoms CZ∗ CD∗ CE∗ CG∗ CH∗

NE∗ ND∗c in PHE TRP TYR HIS
HI2 HIE HID

5.049

π-cationd Aromatic Nitrogen atoms in ARG and LYS;
backbone nitrogen

5.049

π-amide 5.050

HL Halogen-π Chlorine, bromine, iodinec Atoms CZ∗ CD∗ CE∗ CG∗ CH∗

NE∗ ND∗ in HE TRP TYR HIS HIE
HID

3.551

Halogen-carboxyl O in the backbone or in ASP GLU; 3.551

Halogen-S S in MET and CYS 3.552

HD Hydrogen bond Donor O OC1 OC2 OH2 OW OD1 OD2
SG OE1 OE1 OE2 ND1 NE2 SD OG
OG1 OHe

3.3, 100
HA Hydrogen bond Acceptorf N OH2 OW NE NH1 NH2 ND2 SG

NE2 ND1 NZ OG OG1 NE1 OHe

WB Water bridge between Donor/accept Default donor/acceptor as for H-
bonds

3.3, 100

protein and ligand

aDistance between heavy atoms for all interactions except for the H-bond, where the distance between the hydrogen and acceptor atoms is considered.
bHydrophobic atoms in proteins: all carbon atoms of the protein except those bound with a double bond to oxygen (C==O) or nitrogen (C==N) (i.e., backbone C atom, carboxy C in
ASP and GLU, amide C in GLN and ASN, and guanidino C in ARG) and with a single bond to OH or NH3 (as in SER, TYR, LYS, and THR side chains).
cContact with at least five atoms from the list (angle is not considered).
dThe cation–pi interaction is orientation-dependent with the strongest interaction when the cation is placed next to an aromatic ring; to take into account the case of trimethylamine
(ligand), we use a slightly longer distance threshold in the case of a ligand cation.
eAs defined in the Charmm force field used in MDAnalysis.
fAs defined in RDkit; fluorine is also considered as an acceptor. In RDKit, the definitions of the feature types (donor, acceptor, aromatic, halogen, basic, and acidic) were adapted from
Ref. 53.

of 3.5 Å without taking into account the mutual orientation of the
interacting fragments but using a threshold of five contact atoms.
For halogen–carboxyl interactions, the C–Hal⋯O angle should be
above 170○. We, therefore, count only halogen–carboxyl interac-
tions if there are no ligand carbon atoms within the distance of
Hal⋯O plus 1 Å from the oxygen atom.

Salt bridges were split into two classes: those with positively
(IP) and those with negatively (IN) ionizable ligand atoms with a
maximum distance from the respective protein heavy atoms of 5.0
Å. This assignment was based on a recent analysis of protein–ligand
contacts in crystal structures48 (the acceptor–hydrogen distance in
salt bridges was found to be within 2.8 Å–3.3 Å). Note that this
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distance threshold is smaller than the threshold of 5.5 Å suggested
in Ref. 55 and employed, for example, in PLIP.42

Protein–ligand water bridges were identified based on the h-
bond detection function of the MDAnalysis package (the same H-
bond parameters, 3.3 Å and 100○, were employed).

Finally, all nonspecific protein–ligand contacts within a thresh-
old of 5 Å between heavy atoms were stored, along with the num-
ber of water molecules in the ligand solvation shell defined by a
threshold of 3.5 Å between ligand and water heavy atoms.

D. Trajectory analysis
IFPs were computed for each of the last 300 snapshots of each

RAMD dissociation trajectory with the snapshots being saved with a
stride of 2 ps. This part of the trajectories comprises a short sampling
of the bound state and the ligand dissociation phase for the major of
trajectories (see Sec. III C). All structures were superimposed with
a single reference structure obtained after initial equilibration of the
system. Additionally, to IFPs, the number of water molecules in the
first water shell around the ligand, the root mean squared deviation
(RMSD) from the bound position of the ligand, and the ligand center
of mass (COM) were computed for each snapshot.

For each MD snapshot, a binary IFP vector was stored that
contains either 0 or 1 for each contact showing the presence or
absence of a particular interaction. A complete set of IFPs for all
snapshots, each represented as a binary vector, was combined into
a single matrix (with frames along the trajectory as rows and IFP
vector elements as columns) for further analysis.

We employed k-means clustering to identify the states most
often visited in the IFP (see details of the clustering procedure in
Subsection 5 of the Appendix). The positions of the ligand in all

frames that belong to a particular cluster can be projected onto
physical space by mapping the ligand COMs onto a 3D grid and
summing over all snapshots in the cluster. Importantly, the COM
distribution in a cluster may not be compact and different ligand
orientations with close COMs may be assigned to different clusters.
The dissociated state is defined by the cluster in which no protein–
ligand contact is found or in which multiple non-specific contacts
are present, with the ligand COM spread around the protein. In
contrast, the clusters describing the bound states of the ligands are
usually compact in the physical space.

III. RESULTS AND DISCUSSION
A. Benchmark of the GROMACS 2020 implementation
of RAMD

We benchmarked the GROMACS 2020 implementation of
RAMD and its use in the τRAMD protocol for three inhibitors of
HSP90 (compounds 8, 16, and 20 with koff = 0.21 s−1, 1.4 × 10−2 s−1,
and 1.4 × 10−4 s−1, respectively, studied in Ref. 32; PDB ID: 5J64,
5K86, and 5LQ9) selected to have distinct binding scaffolds (Fig. 2)
and large differences in their residence times.

The relative residence times for these compounds obtained
from τRAMD simulations using the NAMD29 software with stan-
dard parameters (i.e., Langevin thermostat with a relaxation period
of 1 ps−1) correlate well with the measured values (Fig. 3). For
comparison, we performed GROMACS simulations using several
conditions: Langevin dynamics and no thermostat or Nosé–Hoover
or Berendsen thermostat and a Parrinello–Rahman barostat. In
the latter two cases, the same relaxation time parameter of 1 ps−1

was employed, whereas in Langevin dynamics, the relaxation time

FIG. 2. Illustration of the binding site of HSP90 with three inhibitors bound [(a)–(c) compounds 8, 16, and 20 of Ref. 32, PDB ID: 5J64, 5J86, and 5LQ9, respectively]. These
protein–ligand complexes were employed for the evaluation of the GROMACS 2020 implementation of RAMD. The ligands are shown with cyan carbons, and the protein
is shown in a half-transparent cartoon representation with interacting residues in a stick representation; water molecules are indicated by red spheres; hydrogen bonds and
aromatic interactions are denoted by dashed lines.
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FIG. 3. Relative residence time, τRAMD, computed for three inhibitors (compounds
8, 16, and 20) of HSP90 and for different simulation conditions plotted against
the measured residence time. The NAMD implementation from Ref. 32 and the
GROMACS 2020 implementation described here were used. In NAMD simula-
tions, the Langevin thermostat was used; in simulations using the GROMACS
engine, Berendsen (B) and Nosé–Hoover (NH) thermostats as well as Langevin
(L) dynamics were tested. Additionally, GROMACS simulations with thermostats
applied to protein + ligand and water + ions sub-systems (two groups) and to the
whole system (one group) were evaluated. The simulation of Langevin dynam-
ics with GROMACS is about 10%–15% slower than MD using either of the
thermostats.

parameter was doubled to 2 ps−1 as suggested in the GROMACS
manual. Simulations with GROMACS under Langevin dynamics
conditions with a relaxation time parameter of 1 ps−1 yielded
approximately twice as long residence times for all compounds.
Since simulation with Langevin dynamics is about 10%–15% slower
than with a Nosé–Hoover thermostat, we used the latter in all sub-
sequent simulations in this study. We also tested using different
thermostat groups (either a complete system or ions with solvent
separated from protein and ligand) but did not notice any signif-
icant difference. In summary, for RAMD simulations with GRO-
MACS under all tested conditions, the computed τRAMD is very
similar to that obtained with NAMD simulations with only small
deviations within the computational uncertainty (see Fig. 3 and
Fig. S1).

The performance of the GROMACS RAMD simulations on
a graphics processing unit (GPU) node is about 3–7 times and
on a central processing unit (CPU) cluster is more than ten
times better than for the NAMD CPU implementation, giving

about 146 ns/day and 327 ns/day, respectively, for the HSP90 sys-
tem (Table II). This difference is achieved because the limitation of
serial RAMD steps is overcome and the performance for RAMD is
comparable to that for conventional MD in the GROMACS GPU
implementation. The new implementation also makes the simula-
tion of larger systems with RAMD computationally feasible. For the
M2 receptor system, 38 ns/day on a GPU was achieved for both
conventional MD and RAMD.

B. Benchmark of the IFP generation protocol
We first compared computed protein–ligand IFPs for the three

HSP90-ligand complexes with those obtained previously32 using
the OpenEye OEChem Toolkit34 and those generated by the lig-
and interaction tool of the RCSB PDB49 and PLIP42 (see Table III).
The number of hydrophobic contacts (HY) in the present study is
generally smaller than in Ref. 32 due to the stricter definition of
the hydrophobic atoms (i.e., not all carbon atoms are considered as
hydrophobic). Apart from HY, there are only a few differences in the
IFPs detected by the different methods. For example, the definition
of aromatic interactions is less strict in the present study compared
to the OpenEye OEChem Toolkit, whereas it agrees well with the
ligand interactions identified in the RCSB PDB and PLIP. For h-
bond (HD/HA) contacts, differences are observed for compounds
8 and 16, where interactions with T184 are missing due to the dis-
tances being slightly longer than the H-bond detection threshold.
The computations of water bridges (WBs) between the protein and
the ligand are found to show the most deviations between methods,
with several contacts missed by MD-IFP.

We next benchmarked the IFP detection procedure on 40 com-
plexes from Ref. 43 by comparing the MD-IFP results with those
of four programs: PLIP,42 FLIP,43 LPC,56 and MOE57 (the results
are summarized in the supplementary material, Excel table). Among
the 250 PL interactions identified by MD-IFP (excluding hydropho-
bic interactions), five were classified as false positives (FPs) (two
hydrogen bonds and three aromatic interactions), i.e., they were
not found by any of the four methods used for the benchmark.
One of the hydrogen bonds is a weak hydrogen bond with a flu-
orine atom considered as an acceptor in PDB ID:3SHY (although
C−−F⋯H-X is weak, it was shown to be relevant for ligand–protein

TABLE II. Performance of conventional MD and the RAMD procedure as implemented in GROMACS and in a Tcl wrapper for NAMD on a CPU-based architecture. The number
of cores given corresponds to the best performance (see the complete performance plot in Fig. S3). Note that the scaling of NAMD workflow is limited by the external Tcl script
controlling the RAMD simulation procedure. Times are given for simulations of two protein–ligand systems: HSP90 and the M2 muscarinic receptor bound to compound 20 and
iperoxo, respectively.

Conventional MD RAMD

NAMD 12 GROMACS 2020 GROMACS 2020 NAMD 12 GROMACS 2020 GROMACS 2020
(MPI + OMP)a (MPI + OMP)a single GPUb (MPI + OMP)a (MPI + OMP)a single GPUb

Number Performance Performance Performance Performance Performance Performance
System of atoms Cores (ns/day) Cores (ns/day) (ns/day) Cores (ns/day) Cores (ns/day) (ns/day)

HSP90 27 000 384 138 384 476 225 240 20 384 327 146
M2 120 000 384 36 384 147 44 240 12 384 158 38

aIntel Xeon E5-2630v3; four OMP threads per MPI threat used for GROMACS simulations.
bIntel Xeon Gold 5118 with NVIDIA Tesla P40; running on one node, four CPU cores, and one GPU.
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TABLE III. Comparison of the IFPs computed for the crystal structures of three HSP90-inhibitor complexes with MD-IFP, in Ref. 33 using the OpenEye OEChem Toolkit,34 from
the ligand interaction diagram in the RCSB PDB database49 and with PLIP.42 ,a

Reference 33 Ligand interactions
PDB ID Ligand MD-IFP (using OEChem) in the RCSB PDB database49 ,b PLIP42

5J64 8 AR: K58 AR: K58 AR: K58
HD/HA: N51 K58 D93
G97

HD/HA: D93 G97 T184 HD/HA: K58 D93 G97 HD/HA: K51 D93 G97
T184

WB: L48 S52 WB: L48 S52 T184 G97 WB: L48 N51 G95
HY: N51 M98 T184 HY: N51 S52 D54 A55

I96 GL97 M98 L107
G108 T109 F138 T184
V186

HY: T184

5J86 16 AR: K58 F138 W162 AR: N51 K58 W162 AR: K58 F138 W162
HD/HA: N51 K58 D93
G97

HD/HA: N51 D93 G97 HD/HA: K58 D93 G97 T184 HD/HA: N51 D93 G97
T184

WB: L48 S52 WB: L48 G95
HY: N51 D54 M98 L103
L107 W162 T184

HY: N51 S52 D54 A55
D93 I96 G97 M98 L103
L107 F138 L150 W162
T184 V186

HY: D54 L103 T184

5LQ9 20 AR: F138 W162 F170 AR: F138 W162 F170 AR: F138, W162 AR: F138 W162
HD/HA: K58 Y139 T184
S52 D93

HD/HA: D93, Y139 HD/HA: K58 D93, Y139 HD/HA: K58 D93, T184

WB: K58 L48 WB: L48 S52 D93 G97 T184 WB: S52, K58
HY: F22 M98 L103 L107
F138 V150 W162 F170

HY: F22 Q23 N51 S52
D54 A55 A57 K58 D93
I96 G97 M98 L103 L107
G108 I110 A111 F138
Y139 V150 W162 F170
T184 V186

HY: F22 L103 L107 Y138
V150 Y170

aIFPs that are not identified by MD-IFP are shown in bold, and those that were not identified by any of the other methods used for benchmarking are underscored.
bIn the RCSB PDB database,49 hydrophobic interactions are not included.

binding58). Remarkably, there are only three false positives among
the 56 detected aromatic interactions, which indicates that using
solely the distance criterion for π–π interactions is sufficient in the
majority of cases. Furthermore, the angle-dependent interactions of
protein residues with halogen atoms are all correctly recognized by
MD-IFP.

Six further interactions (five hydrogen bonds and one salt
bridge) were not recognized by MD-IFP and classified as false
negatives (FNs) as they were identified by all of the other methods.

As expected, the major inconsistency between the different
methods comes from the WB detection. In the present work, 69 WBs
were identified. Among them, 23 were not found by the benchmark
methods (FLIP, PLIP, and MOE), which indicates that criteria of WB
detections are less strictly defined as in the present method. How-
ever, only four detected WBs were found by all the latter methods
but were missing in MD-IFP. Inconsistency in the identification of
water bridges partially arises from differences in the approaches used
and in the hydrogen bond parameters employed, as well as the ambi-
guity of the assignment of hydrogen orientation (which depends on

the procedure used for protonation). Interestingly, almost half of
the false positives correspond to plausible water bridges between the
protein backbone and the ligand (some examples are illustrated in
Fig. S4).

C. Analysis of ligand dissociation routes
The workflow developed here includes tools to analyze ligand

dissociation routes on the basis of clustering in IFP space and a net-
work analysis of the clusters. Since ligands spend most of the RAMD
simulation time in their bound state, we extracted for analysis the
last 300 frames (i.e., the last 300 ps) from each dissociation trajectory
(see ligand RMSD variation in Fig. S5 and more details in Subsec-
tion 5 of the Appendix). We show the capabilities of these tools by
analyzing the three inhibitors of HSP90 illustrated in Fig. 2. These
inhibitors differ in size and have quite distinct dissociation path-
ways: compounds 8 and 16 are relatively small and occupy only the
ATP binding site, whereas compound 20 has a quinoline fragment
that occupies the hydrophobic subpocket located under α-helix3
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[see Fig. 2(c)]. The dissociation pathways in the IFP space for the
three compounds are represented as a network between clusters in
Fig. 4 (from k-means clustering with eight clusters; see Subsection 5
of the Appendix for details). Nodes denote clusters with their size

proportional to the cluster population, and the color density
increases with the average ligand RMSD in the cluster from the ini-
tial bound position. The clusters are ordered along the x axis by the
average displacement of the ligand COM in the cluster from the

FIG. 4. Schematic visualization of the RAMD dissociation trajectories (the last 300 frames of each trajectory are considered) of three inhibitors of HSP90, compounds 8
[(a) and (b)], 16 [(c) and (d)], and 20 [(e) and (f)]. [(a), (c), and (e)] Dissociation pathways are shown in a graph representation. Each cluster is shown by a node with the
size indicating the cluster population. Nodes Ci are positioned on an increasing logarithmic scale of the average ligand COM displacement in the cluster from the starting
snapshot, and the node color denotes the averaged ligand RMSD in the cluster from the starting structure. The width of the light-orange arrows is proportional to the number
of corresponding transitions (Ci → Cj) and (Ci ← Cj) between two nodes Ci and Cj, and the gray arrows indicate the total flow between two nodes [i.e., transitions (Ci → Cj)
− (Cj ← Ci)]. [(b), (d), and (f)] IFP composition of each cluster. PL IFPs and nonspecific protein–ligand contacts within a distance threshold of 5 Å between heavy atoms (in
blue and orange pallets, respectively). A 2D Euclidian distance matrix in the IFP space between cluster means is shown in Fig. S6.
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starting structure. Ligand motion is shown as transitions between
clusters, which are also used to compute and visualize the net flow
between nodes (see Fig. 4).

The bound states can be distinguished from intermediate ones
by the small value of the ligand RMSD relative to the starting ligand
position (within 2 Å; bound states are indicated by light-orange cir-
cles, accordingly). Usually, the RMSD from the starting structure is
small and there are only slight variations in IFPs for all bound-state
clusters. Note, however, that we here analyze only the last 300 snap-
shots, and even in the first snapshot analyzed, the ligand may have
a slightly different position in the bound state from which RAMD
simulations were started.

There is one dissociated state (without or with non specific
PL contacts) that has a large RMSD value (>10 Å) and is col-
ored dark-orange. The rest of the nodes can be considered to be
metastable states along the ligand dissociation pathway. The num-
ber of metastable states naturally depends on the complexity of the
egress route. Specifically, for the smallest compound (8), only one
intermediate state [cluster 7, Fig. 4(a)] is identified, which is very
close to the bound states and differs from them by the loss of the
interactions with GLY97, MET98, and THR184 [see Fig. 4(b)]. This
metastable state is shown in Fig. 5(a) by the COM distribution of
the cluster members mapped onto a 3D grid. Although less pro-
nounced, direct dissociation from the bound state (e.g., cluster 6)
is also observed. All dissociation routes lead directly from the ATP
binding pocket [Fig. 5(b)].

For compound 16, there is also only one intermediate state
[cluster 7, Figs. 4(c) and 5(c)], but it is located further from the
bound states on the COM scale (about 5 Å). In the IFP profile,
only contacts to MET98, LEU107, and PHE138 and a water bridge
to ASP93 are preserved, while the other interactions are much less
pronounced [Fig. 4(d)]. Unlike compound 8, where the hydro-
gen bond with ASP93, the main anchor point for all compounds
bound to the ATP binding site of HSP90, is lost only upon com-
plete dissociation (i.e., in metastable state 8), for compound 16,
this hydrogen bond is first broken upon transition to metastable
state 7, where the compound still retains multiple hydrophobic
and hydrogen bonds and gains a new water-mediated contact to
ASN51.

The structure of the egress paths becomes more complicated for
the bulkier and more slowly dissociating compound 20, which passes
through multiple intermediate transient states during dissociation.
In contrast to the smaller compounds, which demonstrate a sin-
gle dissociation route, compound 20 has two possible egress routes
[indicated by the red arrows in Fig. 5(f)]. One route goes directly
from the ATP-binding site through the intermediate states 6 or 5
[gray and yellow iso-surfaces in the COM distribution in Fig. 5(e)].
The other route runs through the transient hydrophobic subpocket
under α-helix3 [via clusters 5 and 7, Fig. 5(e)].

The IFP composition of the clusters in Fig. 4(e) shows that com-
pound 20 loses its hydrogen bond to ASP93 in all metastable states
starting from cluster 4 and instead forms new contacts with α-helix3
(such as LEU107, ILE110, and ALA111). These contacts are all rather
nonspecific (e.g., hydrophobic), which indicates that the long dis-
sociation times for the pathway under α-helix3 are mainly due to
limited space in the dissociation tunnel rather than the formation of
specific interactions.

FIG. 5. RAMD dissociation trajectories for three inhibitors of HSP90. Compounds
8 [(a) and (b)], 16 [(c) and (d)], and 20 [(e) and (f)] are shown with carbons in cyan
and with α-helix3 in green. [(a), (c), and (e)]The positions of the main metastable
states are shown by iso-surfaces of different colors labeled by the corresponding
cluster number in Fig. 4. [(b), (d), and (f)] Ligand COM population density from the
last 300 frames of each trajectory shown by iso-surfaces clipped in the visualization
plane. For compound 20, two egress routes are indicated by red arrows.

IV. CONCLUSIONS
In this paper, we present an efficient implementation of the

RAMD method along with analysis tools for the exploration of
ligand egress routes and for the prediction of relative protein–
ligand residence times using the τRAMD approach.32,33 Despite
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the promising efficiency and accuracy of the method, the preced-
ing implementation suffered from two important limitations: (i) the
parallel scaling performance of MD simulations was diminished as
the random force adjustment steps were serially wrapped around
the MD engine and (ii) difficulties in the quantitative analysis of
large numbers of ligand dissociation trajectories hindered the detec-
tion of possible egress routes and mechanisms and their statistical
analysis. To overcome these two bottlenecks, we developed a new
open-source workflow that includes (i) a new implementation of the
RAMD method in the GROMACS MD simulation package that sig-
nificantly improves the simulation performance relative to the pre-
vious implementation in NAMD and (ii) a Python-based workflow
for automated analysis of ligand egress trajectories, which includes
computation of residence times for series of compounds, and the
MD-IFP tool set for generation of protein–ligand interaction finger-
prints along ligand dissociation trajectories and analysis of ligand
dissociation pathways in the IFP space.

The new implementation of the RAMD protocol in the GRO-
MACS PULL function speeds up simulations of ligand dissociation
by more than ten times relative to the previous implementation in
a Tcl script with the NAMD engine. We evaluated the new imple-
mentation for complexes of three inhibitors with HSP90, a system
previously studied in detail,32 using different parameters for the
underlying MD protocol. We found that the results of the τRAMD
procedure obtained using the two MD simulation programs are the
same within the uncertainty of simulations. Then, we compared
the performance of the two implementations on systems of differ-
ent sizes. These simulations showed that the sampling of ligand
egress for computing a relative residence time (usually about 60
ligand dissociation trajectories up to several nanosecond duration
were required) could be performed within about half a day on one
GPU node for a relatively small system (the solvated globular HSP90
domain with 27 500 atoms) and within two days for a larger system
(a GPCR protein embedded in a lipid bilayer having about 120 000
atoms). Taking into account that the individual RAMD simulations
can be performed independently and, thus effectively parallelized,
the method provides the possibility to compute relative residence
times for multiple drug candidates within a few days on a GPU
or CPU cluster. Furthermore, we report a protocol for processing
the output RAMD trajectories that enables the automated computa-
tion of relative residence times, their statistical assessment, and the
comparison of computed and experimental data, if available.

Analysis of the dissociation trajectories is another important
aspect of the new workflow. The τRAMD method is aimed at the
quick estimation of the dissociation rates and requires tens of trajec-
tories to be generated per ligand to ensure reasonably small uncer-
tainty in the computed values. Nonetheless, even hundreds of gener-
ated trajectories cannot completely cover the full configuration space
of the multidimensional ligand–protein dissociation landscape. For
this reason, reconstruction of the protein–ligand dissociation free
energy landscape or even the free energy profile of a single dissocia-
tion pathway is not feasible. One should, however, expect that the
generated trajectories bear important information about protein–
ligand interactions that affect residence time if the derived residence
times provide the correct trends for a set of ligands. Therefore, we
developed MD-IFP to generate protein–ligand IFPs for MD trajec-
tories. We benchmarked MD-IFP on 40 protein–ligand complexes
and found that it identified similar IFPs to several available methods.

Then, we applied the procedure to trajectories of three complexes
of HSP90 with inhibitors that have very different residence times,
sizes, and binding poses and, thus, IFP profiles. We showed how
the workflow could be used to explore the increasing complexity of
the dissociation pathway in the IFP space on increasing ligand size,
which, in this case, is correlated with increasing residence time.

In summary, the workflow reported provides an efficient com-
putational engine for the estimation of the relative residence times
of compounds against a macromolecular target and tools for obtain-
ing insights into the underlying mechanisms determining ligand
unbinding kinetics. It may thus facilitate the assessment and selec-
tion of drug candidates in the early stages of a drug development
pipeline.

SUPPLEMENTARY MATERIAL

See the supplementary material for Figs. S1–S9 that provide
additional results: Fig. S1: RAMD simulations using the GROMACS
implementation for three HSP90 compounds showing a comparison
of using the Langevin dynamics, Berendsen, and Nose–Hoover ther-
mostats; Fig. S2: illustration of the procedure for detection of π–π
interactions with MD-IFP; Fig. S3: plot showing the performance of
different implementations for two test examples (HSP90 and mus-
carinic receptor M2); Fig. S4: illustration of water bridges identified
by MD-IFP; Fig. S5: structural variations in the last 300 frames of
RAMD dissociation trajectories for three compounds; Fig. S6: 2D
Euclidian distance matrix in the IFP space between cluster means
for the clusters; Fig. S7: illustration of the effect of the cluster num-
ber on the structure of the simulated dissociation pathways; Fig. S8:
illustration of the clustering obtained by applying the Gaussian Mix-
ture (GM) method to the RAMD dissociation trajectories of the
three compounds; and Fig. S9: illustration of dissociation networks
generated using clustering based on the IFP only. The excel table
contains the results of the benchmark of the MD-IFP protocol for 40
protein–ligand complexes.
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APPENDIX: METHODOLOGY/
IMPLEMENTATION/TECHNICAL DETAILS
1. Tcl implementation of RAMD in NAMD

In the NAMD-based protocol for RAMD simulations, a Tcl
script30,31 wrapped around the MD is employed. The script com-
putes the ligand displacement after each short (50 time steps) MD
interval and recomputes the force if necessary. It sends a kill signal
to stop the trajectory when the ligand displacement from its ini-
tial position reaches the predefined dissociation threshold distance.
In the recent version, the procedure of selection force orientation
was improved to ensure uniform distribution of the vector direction
(version 5.05 https://www.h-its.org/downloads/ramd/).

2. Implementation of RAMD in GROMACS
The RAMD implementation is based on the “pull” code in

GROMACS. The key feature of the pull code is that forces are
applied between the centers of mass of pairs of atom groups. Core
functionalities such as the usage of MPI and/or GPU are already
included, and the performance has been optimized. In order to
keep the interface as user-friendly as possible, only RAMD settings
have to be provided. All pull code-related settings are handled auto-
matically by the RAMD implementation during the GROMACS
preprocessing step.

A function for changing the pull direction during the sim-
ulation is not available in the pull code. Therefore, the random
force direction is decomposed into three orthogonal unit vectors
(1, 0, 0), (0, 1, 0), and (0, 0, 1), and only the projected force val-
ues have to be adjusted. For testing that the force directions were
distributed in a spherically uniform fashion, a sphere was divided
into 32 longitudinal bins and a large number (1 × 109) of force
directions was generated randomly. The procedure was repeated in
each direction in space to ensure a uniform spherical distribution.
By counting the number of force vectors assigned to the bins, we
could ensure that the force generator indeed covers the whole sphere
uniformly.

3. Validation of MD-IFP on a set of crystal structures
of protein–ligand complexes

For the validation, we chose the same set of structures of
protein–ligand complexes that was used to validate FLIP.43 It con-
sists of 50 RCSB PDB entries and their corresponding ligand and
chain identifiers. Hydrogen atoms were added using Chimera59 1.14,
using the “unspecified” protonation state with the consideration of
hydrogen bonds. A protein chain, a ligand, and water molecules
were extracted using the pdb-file processing tools in the Biopython
(version 1.76) package.60 For structures containing multiple confor-
mations, conformation A was extracted and all other conformations
were discarded. The ligand was saved in the mol2 format. For struc-
tures containing azole, amidine, and urea groups, Chimera failed
to produce correct mol2 files, and therefore, these files were man-
ually corrected. If there was no apparent reason for the mol2 file not
working, we created the mol2 file using MOE.57

Altogether ten structures were removed from the original
dataset because we were either unable to generate usable mol2 files
or the structures were unsuitable for our processing pipeline (e.g.,
having two ligands covalently bound together), or other methods

used for benchmark were unable to generate results. Thus, our final
benchmark set consisted of 40 structures.

The IFPs generated by MD-IFP were compared to the results
from FLIP,43 PLIP,42 LPC,56 and MOE.57 We considered the interac-
tions detected by MD-IFP as False Positives (FPs) if they could not be
detected by any of these four methods and as False Negatives (FNs) if
all four methods detected them, but they were not found by MD-IFP.
Since water bridges and halogen bonds could not be detected using
LPC, we classified them as FN if FLIP, PLIP, and MOE detected the
interaction.

Hydrophobic interactions were not considered since their def-
inition is not as clear as for the other interactions and one would
naturally expect a lot of variation between methods for them. Except
for MOE, none of the benchmark methods differentiate between
donated and accepted hydrogen bonds, both indicated by the abbre-
viation HB for hydrogen bond in the “missing interaction” column.
Since we consider fluorine to make hydrophobic interactions, halo-
gen bonds with fluorine were excluded from the analysis. Interac-
tions with metal ions and cofactors were excluded since the ability
to detect them has not yet been implemented in MD-IFP.

The benchmark results are summarized in the supplementary
material, Excel table.

4. Details of MD simulations
a. System setup and force field parameters

The structures of the HSP90-inhibitor complexes were pre-
pared from the crystal structures with PDB ID: 5J64, 5J86, and
5LQ9 for compounds 8, 16, and 20, respectively, as described in
Ref. 32. The structure of the M2 muscarinic GPCR with the orthos-
teric ligand, iperoxo, bound was prepared from the structure with
PDB ID 4MQT61 with the allosteric compound LY2119620 removed.
The Charmm-GUI62 web server was used to embed the GPCR in a
pure 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) bilayer and
perform protein protonation and generation of topology files and
coordinates for AMBER simulations. Systems were solvated with
TIP3P63 water molecules with a margin of at least 10 Å from the
protein, and Na+ and Cl− ions were added to ensure system neutral-
ity at an ion concentration of 150 mM. Iperoxo was modeled in its
protonated state (charge +1e). For all systems, the Amber ff1464 and
GAFF65 force fields for protein/lipid and ligands, respectively, were
employed. RESP partial atomic charges for ligands were computed
using GAMESS66 calculations of the electron density population at
the HF/6-31G∗(1D) level and Amber tools.67

b. Simulation protocol
In all cases, the system was first energy minimized and

equilibrated using the Amber18 software.67 For HSP90, step-wise
minimization, heating, and equilibration were done, as described
elsewhere.32 The system with the membrane protein was first
minimized (restraints on all heavy atoms except water and ions
of 1000 kcal mol−1 Å−2, 500 kcal mol−1 Å−2, 100 kcal mol−1

Å−2, 50 kcal mol−1 Å−2, 10 kcal mol−1 Å−2, 1 kcal mol−1 Å−2,
0.5 kcal mol−1 Å−2, 0.1 kcal mol−1 Å−2, 0.05 kcal mol−1 Å−2, and
0.01 kcal mol−1 Å−2 for 1000 steps of conjugate gradient and then
10 000 steps without restraints) and then heated in 200 ps steps
with restraints of 100 kcal mol−1 Å−2 on all heavy atoms except
water and ions up to 100 K (NVT-Langevin τ = 1 ps−1) and then
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in an NPT ensemble (7 ns) up to 310 K with decreasing restraints
of 50 kcal mol−1 Å−2, 30 kcal mol−1 Å−2, and 5 kcal mol−1 Å−2,
and finally without restrains. Then, we followed the protocol for
the setup of simulations of membrane-containing systems on GPUs
(https://ambermd.org/tutorials/advanced/tutorial16/) that consists
of ten consecutive simulations of 5 ns duration (which is required
because the GPU code does not recalculate the non-bonded list cells
during a simulation). Finally, we ran a further simulation of 300 ns
under NPT (Langevin thermostat with a Berendsen barostat) con-
ditions to ensure equilibration of the whole system. For all simu-
lations, a cutoff of 10 Å for nonbonded Coulombic and Lennard-
Jones interactions and periodic boundary conditions with a particle
mesh Ewald treatment of long-range Coulombic interactions were
used. A 2 fs time step was employed with bonds to hydrogen atoms
constrained using the SHAKE algorithm.68

The equilibrated systems were then used in the NAMD and
GROMACS τRAMD protocols. The protocol employed for RAMD
simulations using the NAMD29 software was reported elsewhere32

and can be found online at kbbox.h-its.org.
To perform simulations in GROMACS,69 the final output coor-

dinate and topology files were transferred from Amber to GRO-
MACS using ParmEd.70 Then, we first performed short NVT sim-
ulations (Berendsen thermostat, 30 ns) and then generated four
trajectories under NPT conditions (Nosé–Hoover thermostat and
Parrinello–Rahman barostat, 30 ns). Each trajectory was started
with velocities generated from the Maxwell distribution to ensure
trajectory diversity.

RAMD simulations were performed with GROMACS at NPT
conditions (Nosé–Hoover thermostat and Parrinello–Rahman baro-
stat) except for the cases where different thermostats were evaluated.
Displacement of the ligand COM was checked every 100 fs, and then,
the random force orientation was either retained (if the ligand COM
had moved by at least 0.025 Å) or changed randomly otherwise. Sim-
ulations were stopped when the ligand COM had moved further
than 30 Å from protein COM in HSP90 and further than 50 Å in
the M2 receptor. Coordinates were saved at 1 ps intervals.

5. Analysis protocols
a. Preprocessing

IFPs were generated for the 300 last frames of each trajectory
(superimposed with the last snapshot of the equilibration trajectory
employed as a reference), thus discarding the majority of the frames
where the ligand retains a bound state position. The IFPs for all
frames, together with nonspecific contacts within a threshold dis-
tance of 5 Å, were collected in one binary matrix for each compound
filled with 0/1 values for each particular contact (i.e., residue and
type of interaction) and frame. Additionally, RMSD of the ligand
and protein relative to reference as well as the ligand COM coordi-
nates and the number of water molecules in the ligand solvation shell
were stored.

b. Clustering
We employed k++-means clustering as implemented in the

scikit-learn package71 to detect the most visited regions in the
IFP space. The clustering was done on the set of IFP vectors and
unspecific contacts.

The selection of the number of clusters to be generated is the
main bottleneck in the k-means approach. In the present case, we
chose the number of clusters from a trade-off between the difficulty
in analyzing multiple clusters and the blurring of the protein–ligand
contact specificity in the case of a small number of clusters. Specif-
ically, we selected the minimal number of clusters (8), for which
transient states in dissociation trajectories were clearly recognized
for all three compounds (see the illustration of dissociation trajec-
tories with smaller and larger numbers of clusters in Fig. S7). Note
that a larger number of clusters (i.e., up to 10) do not change essen-
tially the general pattern of dissociation behavior for any of the
three ligands but rather increases the number of clusters that char-
acterize possible configurations of the bound state. On the other
hand, if too few clusters are selected (6 or 4), some intermediate
metastable states are merged with the bound state. However, even
with four clusters, the difference in the dissociation profile of com-
pound 20, having well-defined intermediate states, from those of
compounds 8 and 16, whose dissociation pathways are reduced to
a direct transition from the bound to the unbound state, is clearly
apparent.

Additionally, we tested using the Gaussian Mixture (GM)
method instead of k-means for clustering (using default parameters
of the scikit-learn package). The GM method is based on a proba-
bilistic model that assumes that the data can be described by a mix-
ture of a finite number of Gaussian distributions. The dissociation
pathways obtained from GM clustering (see Fig. S8) show slightly
different distributions of the intermediate metastable states, but the
general difference in the pattern of states of compounds 8 and 16 vs
compound 20 is retained, showing that the latter compound has a
notably more complicated dissociation route.

Using just IFP for clustering, instead of a combination of IFP
and nonspecific protein–ligand contacts, does not change this pat-
tern either, although the minimum number of clusters required to
reveal a metastable state for compound 16 increases from 8 to 10
(Fig. S9).

DATA AVAILABILITY

GROMACS-RAMD version 1.0 has been released for GRO-
MACS versions 2019 and 2020 and is publicly available at
https://github.com/HITS-MCM/GROMACS-ramd. Tutorials for
the τRAMD protocol implemented with NAMD and GRO-
MACS are available on KBbox at https://kbbox.h-its.org/toolbox/.
Python scripts of the IFP generation and analysis are available at
https://github.com/HITS-MCM/MD-IFP. The data that support the
findings of this study are available from the corresponding author
upon reasonable request.
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