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29.1 Full solutions

2.1 Using the relation P(AU B) = P(A)+P(B)—P(AN B), we obtain P(AU B) =
2/3+1/6 —1/9 = 13/18.

2.2 The event “at least one of E¥ and F' occurs” is the event F U F. Using the
second DeMorgan’s law we obtain: P(E°NF°) = P(FUF)°) =1—-P(EUF) =
1-3/4=1/4.

2.3 By additivity we have P(D) = P(C° N D)+P(C N D). Hence 0.4 = P(C° N D)+
0.2. We see that P(C°N D) = 0.2. (We did not need the knowledge P(C) = 0.3!)

2.4 The event “only A occurs and not B or C” is the event {A N B°NC°}. We
then have using DeMorgan’s law and additivity

P(ANB°NC°)=PAN(BUC))=P(AUBUC)-P(BUCQC).

The answer is yes , because of P(BUC) =P(B) +P(C) —P(BNC)

2.5 The crux is that B C A implies P(A N B) = P(B). Using additivity we obtain
P(A) = P(ANB)+P(AN B) = P(B)+P(A\ B). Hence P(A\ B) = P(A)—P(B).
2.6 a Using the relation P(AU B) = P(A) + P(B) — P(AN B), we obtain 3/4
1/3+1/2 - P(AN B), yielding P(AN B) = 4/12 +6/12 — 9/12 = 1/12.

2.6 b Using DeMorgan’s laws we get P(A°UB°) =P((ANB)°)=1—-P(ANB) =
11/12.

2.7 P((AUB)N(ANB)°) = 0.7.

2.8 From the rule for the probability of a union we obtain P(D; U D3) < P(Dy) +
P(D;) = 2- 1075, Since D; N D, is contained in both D; and D, we obtain
P(D1 N D3) < min{P(D1),P(D2)} = 107°. Equality may hold in both cases: for
the union, take Dy and Ds disjoint, for the intersection, take D; and D3 equal to
each other.

2.9 a Simply by inspection we find that
A= {TTH,THT,HTT}, B = {TTH,THT, HTT, TTT},
C={HHH ,HHT,HTH,HTT},D = {TTT,TTH,THT, THH}.

2.9b Here we find that A° = {TTT,THH,HTH, HHT, HHH },
AU(CND)=AUb=AAND*={HTT}.

2.10 Cf. Exercise 2.7: the event “A or B occurs, but not both” equals C' = (AUB)N
(A N B)¢ Rewriting this using DeMorgan’s laws (or paraphrasing “A or B occurs,
but not both” as “A occurs but not B or B occurs but not A”), we can also write
C=(ANB°) U (BN A°.

2.11 Let the two outcomes be called 1 and 2. Then Q = {1, 2}, and P(1) = p,P(2) =
p?. We must have P(1) + P(2) = P(Q) = 1, so p + p*> = 1. This has two solutions:
p=(-1++/5)/2and p = (—1 — /5)/2. Since we must have 0 < p < 1 only one is
allowed: p = (=14 /5)/2.

2.12 a This is the same situation as with the three envelopes on the doormat, but

now with ten possibilities. Hence an outcome has probability 1/10! to occur.

2.12b For the five envelopes labeled 1,2,3,4,5 there are 5! possible orders, and
for each of these there are 5! possible orders for the envelopes labeled 6,7,8,9, 10.
Hence in total there are 5! - 5! outcomes.
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2.12 ¢ There are 32-5!-5! outcomes in the event “dream draw.” Hence the probability
is 32-5151/101=32-1-2-3-4-5/(6-7-8-9-10) = 8/63 =12.7 percent.

2.13 a The outcomes are pairs (z,y).

a b ¢ d

The outcome (a,a) has probability 0 to
occur. The outcome (a,b) has probability a O % le ﬁ
1/4 x 1/3 =1/12 to occur. b ﬁ (1) is %
The table becomes: ¢ o1 (1) 12
d 35 15 13 0

2.13b Let C be the event “c is one of the chosen possibilities”. Then C =
{(c, a), (¢,b), (a,c), (b,c)}. Hence P(C) =4/12 =1/3.

2.14 a Since door a is never opened, P((a,a)) = P((b,a)) = P((¢,a)) = 0. If the can-
didate chooses a (which happens with probability 1/3), then the quizmaster chooses
without preference from doors b and c. This yields that P((a,b)) = P((a,c)) = 1/6.
If the candidate chooses b (which happens with probability 1/3), then the quizmas-
ter can only open door c. Hence P((b,¢)) = 1/3. Similarly, P((c, b)) = 1/3. Clearly,
P((b,b) = P((c,)) = 0.

2.14b If the candidate chooses a then she or he wins; hence the corresponding
event is {(a, a), (a,b), (a,c)}, and its probability is 1/3.

2.14c¢ To end with a the candidate should have chosen b or c. So the event is
{(b,), (c,b)} and P({(b,¢), (¢, b)}) = 2/3.

2.15 The rule is:

P(AUBUC) =P(A)+P(B)+P(C)-P(ANB)-P(ANC)-P(BNC)+P(ANBNC).

That this is true can be shown by applying the sum rule twice (and using the set
property (AUB)NC =(ANC)uU(BNCQC)):

P(AUBUC)=P((AUB)UC)=P(AUB)+P(C)-P((AUB)NC)
=P(A)+P(B)-P(ANB)+P(C)-P(ANC)U(BNC))
=s—P(ANB)-P(ANC))—P(BNC))+P(ANC)N(BNC))
=s—PANB)-P(ANC)-P(BNC)+P(ANBNCQC).

Here we did put s := P(A) 4+ P(B) + P(C) for typographical convenience.

2.16 Since ENF NG = (), the three sets ENF, FN G, and EN G are disjoint.
Since each has probability 1/3, they have probability 1 together. From these two
facts one deduces P(E) = P(EN F)+P(ENG) =2/3 (make a diagram or use that
E=En(ENF)UEN(FNG)UEN(ENG)).

2.17 Since there are two queues we use pairs (¢, j) of natural numbers to indicate
the number of customers i in the first queue, and the number j in the second queue.
Since we have no reasonable bound on the number of people that will queue, we
take Q = {(i,j) :i=0,1,2,...,5=0,1,2,... }.

2.18 The probability r of no success at a certain day is equal to the probability
that both experiments fail, hence r = (1 — p)?. The probability of success for the
first time on day n therefore equals r™~*(1 — 7). (Cf. Section2.5.)
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2.19a We need at least two days to see two heads, hence Q = {2,3,4,...}.

2.19b It takes 5 tosses if and only if the fifth toss is heads (which has probability
p), and exactly one of the first 4 tosses is heads (which has probability 4p(1 — p)?).
Hence the probability asked for equals 4p*(1 — p)>.

3.1 Define the following events: B is the event “point B is reached on the second
step,” C' is the event “the path to C' is chosen on the first step,” and similarly we
define D and E. Note that the events C, D, and E are mutually exclusive and that
one of them must occur. Furthermore, that we can only reach B by first going to C
or D. For the computation we use the law of total probability, by conditioning on
the result of the first step:

P(B)=P(BNC)+P(BND)+P(BNE)
=P(B|C)P(C)+P(B|D)P(D)+P(B|E)P(E)
RO U O U RPN 4
3 3 4 3 3 36°
3.2a Event A has three outcomes, event B has 11 outcomes, and AN B =
{(1,3),(3,1)}. Hence we find P(B) = 11/36 and P(AN B) = 2/36 so that

_P(AnB) 2/36 2
P(AlB) = P(B) ~ 11/36 11’
3.2b Because P(A) = 3/36 = 1/12 and this is not equal to 2/11 = P(A| B) the
events A and B are dependent.

3.3 a There are 13 spades in the deck and each has probability 1/52 of being chosen,
hence P(S1) = 13/52 = 1/4. Given that the first card is a spade there are 13—1 = 12
spades left in the deck with 52 — 1 = 51 remaining cards, so P(S2|S1) = 12/51. If
the first card is not a spade there are 13 spades left in the deck of 51, so P(S2 | Sf) =
13/51.

3.3 b We use the law of total probability (based on Q = S; U Sf):
P(Sz) = P(Sz N Sl) + P(Sz N Sf) = P(SQ |S1) P(S1) + P(SQ |Sf) P(Sf)
12 01,13 3 12439 1

T 175117 514 4
3.4 We repeat the calculations from Section 3.3 based on P(B) = 1.3-107%:

P(T N B) = P(T'| B) - P(B) = 0.7 - 0.000013 = 0.000 0091
P(T N B°) = P(T| B°) - P(B°) = 0.1-0.999 987 = 0.099 9987
so P(T) = P(T N B) + P(T N B°) = 0.000 0091 + 0.099 9987 = 0.100 0078 and

P(T'NB) _ 0.0000091
P(T) ~ 0.1000078

P(B|T) = =0.0000910 = 9.1-107°.

Further, we find
P(T° N B) = P(T°| B) - P(B) = 0.3 - 0.000013 = 0.000 0039
and combining this with P(T°) =1 — P(T") = 0.899 9922:

P(T°NB) _ 0.0000039

= =0.0000043 = 4.3-10"C.
P(T°) 0.899 9922

P(B|T°) =
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3.5 Define the events R; and Rz meaning: a red ball is drawn on the first and
second draw, respectively. We are asked to compute P(Ri N R2). By conditioning
on R; we find:

P(RiNRy) =P(Rz|Ry) - P(R1) =

where the conditional probability P(R2 | R1) follows from the contents of the urn
after R1 has occurred: one white and three red balls.

3.6a Let E denote the event “outcome is an even numbered month” and H the
event “outcome is in the first half of the year.” Then P(E) = 1/2 and, because
in the first half of the year there are three even and three odd numbered months,
P(E|H) = 1/2 as well; the events are independent.

3.6 b Let S denote the event “outcome is a summer month”. Of the three summer
months, June and August are even numbered, so P(E|S) = 2/3 # 1/2. Therefore,
FE and S are dependent.

3.7a The best approach to a problem like this one is to write out the conditional
probability and then see if we can somehow combine this with P(A) = 1/3 to
solve the puzzle. Note that P(BN A°) = P(B|A°)P(A°) and that P(AUB) =
P(A) +P(Bn A°). So
1 1 1 1 1 1
PAUB)=-4>-(1—-Z)=-+4-=2.
(AU B) 3+4( 3) 37672
3.7b From the conditional probability we find P(A° N B¢) = P(A°|B°)P(B°) =
1 (1 —=P(B)). Recalling DeMorgan’s law we know P(A°NB°) = P((AUB)) =
1-P(AU B) = 1/3. Combined this yields an equation for P(B): 1 (1 — P(B)) =1/3
from which we find P(B) = 1/3.
3.8a This asks for P(W). We use the law of total probability, decomposing 2 =
F U F°. Note that P(W | F) = 0.99.

PW)=PWNFE)+P(WNF)=PW|F)P(F)+PW|F)P(F°)
=0.99-0.140.02-0.9 =0.099 + 0.018 = 0.117.

3.8 b We need to determine P(F | W), and this can be done using Bayes’ rule. Some
of the necessary computations have already been done in a, we can copy P(W N F))
and P(W) and get:

P(ENW) _ 0.099
P(W) — 0.117

P(F|W) = = 0.846.

3.9 Deciphering the symbols we conclude that P(B|A) is to be determined. From
the probabilities listed we find P(AN B) = P(A) +P(B)-P(AUB) =3/4+2/5—
4/5 =17/20, so that P(B|A) = P(ANB) /P(A) = (7/20)/(3/4) = 28/60 = 7/15.
3.10 Let K denote the event “the student knows the answer” and C the event
“the answer that is given is the correct one.” We are to determine P(K | C). From
the information given, we know that P(C'| K) = 1 and P(C'| K°) = 1/4, and that
P(K) = 0.6. Therefore:

P(C) =P(C|K)-P(K)+P(C|K) - P(K°) =1-0.6 + i 0.4=06+01=07

and P(K|C) = 0.6/0.7 = 6/7.
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3.11a The probability that a driver that is classified as exceeding the legal limit in
fact does not exceed the limit.

3.11b It is given that P(B) = 0.05. We determine the answer via P(B¢|A)
P(B°NA)/P(A). We find P(B°N A) = P(A| B°)-P(B°) =0.95(1—p), P(BN A)
P(A|B)-P(B) = 0.05p, and by adding them P(A) = 0.95 — 0.9p. So

_095(1—p) 95(1—p)

P(B°|A) = =
(B714) 0.95—-09p 95—-90p

=0.5 when p = 0.95.

3.11 ¢ From b we find

95—-90p—95(1—p)  5p
95 —90p T 95—-90p’

P(B|A)=1-P(B°|A) =

Setting this equal to 0.9 and solving for p yields p = 171/172 ~ 0.9942.

3.12 We start by deriving some wunconditional probabilities from what is given:
P(BNC)=P(B|C)-P(C)=1/6 and P(ANBNC)=P(BNC)-P(A|BNC) =
1/24. Next, we should realize that BNC'is the union of the disjoint events ANBNC
and AN BNC, so that

c 1 1 1
3.13 a There are several ways to see that P(D1) = 5/9. Method 1: the first team
we draw is irrelevant, for the second team there are always 5 “good” choices out of 9
remaining teams. Method 2: there are (120) = 45 possible outcomes when two teams
are drawn; among these, there are 5 -5 = 25 favorable outcomes (all weak-strong
pairings), resulting in P(D1) = 25/45 = 5/9.
3.13b Given D1, there are 4 strong and 4 weak teams left. Using one of the methods
from a on this reduced number of teams, we find P(D2 | D1) = 4/7 and P(Dy1 N D) =
P(D2| D1)-P(D1) = (4/7)-(5/9) = 20/63.
3.13 ¢ Proceeding in the same fashion, we find P(Ds|D1 N D2) = 3/5 and
P(D1NDyND3) =P(Ds| Dy NDsy)-P(D1NDy)=(3/5)-(20/63) = 12/63.
3.13d Subsequently, we find P(D4 | DiN---ND3) = 2/3and P(Ds | D1N---NDy) =
1. The final result can be written as

8

P(DiN---NDs) = =53

3.2
53

ol
=

The probability of a “dream draw” with n strong and n weak teamsis P(D1 N ---N Dy,) =
/().

3.14 a If you chose the right door, switching will make you lose, so P(W | R) = 0.

If you chose the wrong door, switching will make you win for sure: P(W | R°) = 1.

3.14b Using P(R) = 1/3, we find:

PW)=PWNR)+P(WNR°)=P(W|R)P(R) + P(W|R°)P(R)
1 2 2

=0--4+1-2 =2,
3+ 3 3
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3.15 This is a puzzle and there are many ways to solve it. First note that P(A) =
1/2. We condition on AU B:

P(B) =P(B|AUB)-P(AUB)
_ %{P(A) +P(B) — P(A)P(B)}

2.1 1
= 3{5 +P(B) - §P(B)}
1 1

=3 + 3 (B).
Solving the resulting equation yields P(B) = % =1
3.16 a Using Bayes’ rule we find:
P(DNT) 0.98-0.01

P(D|T) = ~ 0.1653.

P(T) = 0.98-0.01+0.05-0.99

3.16 b Denote the event “the second test indicates you have the disease” with the
letter S.

Method 1 (“unconscious”): from the first test we know that the probability we have
the disease is not 0.01 but 0.1653 and we reason that we shoud redo the calculation
from a with P(D) = 0.1653:

P(DNS) 0.98-0.1653
P(D|S) = = ~ 0.7951.
(D]5) P(S) 0.98 - 0.1653 + 0.05 - 0.8347 ~ 79

This is the correct answer, but a more thorough consideration is warrented.
Method 2 (“conscientious”): we are in fact to determine

P(DNSNT)

P(D|SNT) = BSAT)

and we should wonder what “independent repetition of the test” exactly means.
Clearly, both tests are dependent on whether you have the disease or not (and as a
result, S and T are dependent), but given that you have the disease the outcomes
are independent, and the same when you do not have the disease. Formally put:
given D, the events S and T are independent; given D¢, the events S and T are
independent. In formulae:

P(SNT|D)=P(S|D)-P(T|D),
P(SNT|D% =P(S| D% -P(T|D°).

So P(DNSNT) = P(S|D) - P(T|D)P(D) = (0.98)% - 0.01 = 0.009604 and
P(D°N S NT) = (0.05)2-0.99 = 0.002475. Adding them yields P(S N T) = 0.012079
and so P(D|S NT) = 0.009604/0.012079 ~ 0.7951. Note that P(S|T) ~ 0.2037
which is much larger than P(S) & 0.0593 (and for a good test, it should be).

3.17a I win the game after the next two rallies if T win both: P(W N G) = p?.
Similarly for losing the game if you win both rallies: P(W°NG) = (1 — p)*. So
P(W|G) =p*/(p* + (1 - p)?).
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3.17b Note that D = G° and so P(D) =1 — p*> — (1 — p)? = 2p(1 — p). Using the
law of total probability we find:

P(W)=P(WNG)+PWND)=p*+P(W|D)P(D) =p* + 2p(1 — p)P(W | D).

Substituting P(W | D) = P(W) (when it become deuce again, the initial situation
repeats itself) and solving yields P(W) = p?/(p* + (1 — p)?).
3.17 ¢ If the game does not end after the next two rallies, each of us has again
the same probability to win the game as we had initially. This implies, that the
probability of winning the game is split between us in the same way as the probability
of an “immediate win,” i.e., in the next two rallies. So P(W) = P(W | G).
3.18a No: AN B =0soP(A|B) =0%# P(A) which is positive.
3.18 b Since, by independence, P(A N B) = P(A)-P(B) > 0 it must be that ANB #
0.
3.18¢c If A C B then P(B|A) = 1. However, P(B) < 1, so P(B) # P(B| A): A en
B are dependent.
3.18d Since A C AN B, P(AUBJ|A) = 1, so for the required independence
P(A U B) = 1should hold. On the other hand, P(AN B) = P(A)+P(B)—P(A)-P(B)
and so P(AU B) =1 can be rewritten as (1 — P(A)) - (1 — P(B)) = 0, which clearly
contradicts the assumptions.
4.1a In two independent throws of a die there are 36 possible outcomes, each
occurring with probability 1/36. Since there are 25 ways to have no 6’s, 10 ways to
have one 6, and one way to have two 6’s, we find that pz(0) = 25/36, pz(1) = 10/36,
and pz(2) = 1/36. So the probability mass function pz of Z is given by the following
table:

z 0o 1 2

25 10 1
pz(2) 36 36 36

The distribution function Fz is given by

0 fora <0
25

Fo(a) = 3 for0<a<1
25 4 10 _ 35 forl1<a<?2
36 " 36 36 >

25 10 1 _
%Jr%“r%fl fOra22.

Z is the sum of two independent Ber(1/6) distributed random variables, so Z has
a Bin(2,1/6) distribution.

4.1b If we denote the outcome of the two throws by (7,7), where i is the out-
come of the first throw and j the outcome of the second, then {M = 2,Z = 0} =
{(2,1), (1,2), (2,2) 1, {S=52=1} =0,{S =8,Z = 1} = {(6,2), (2,6) }. Fur-
thermore, P(M =2,Z =0) = 3/36, P(S=5,Z=1) =0, and P(S=8,Z=1) =
2/36.

4.1 ¢ The events are dependent, because, e.g., P(M =2,Z =0) = 33—6 differs from
P(M=2)-P(Z=0)= % 2

36"

4.2a SinceP(Y =0)=P(X =0),P(Y =1)=P(X =-1)4+P(X =1),P(Y =4)
0

P(X = 2), the following table gives the probability mass function of Y

ool — H

py(a) 3

N



29.1 Full solutions 465

)

42b Fx(1)=P(X <1)=1/2 Fv1)=1/2Fx(3)=3; Fv(3)=
Fx(m—3) = Fx(0.1415...) = 3/8; Fy(m—3)=1/8.

4.3 For every random variable X and every real number a one has that {X =a} =
{X <a}\{X < a}, so

=

P(X=a)=P(X <a)-P(X <a).

Since F' is right-continuous (see p. 49) we have that F(a) = lim.jo F(a 4+ ¢) =
lim. o P(X < a+¢). Moreover, P(X < a) =lim. o P(X <a—¢) =lim. g F(a—¢),
so we see that P(X = a) > 0 precisely for those a for which F'(a) “makes a jump.” In
this exercise this is for a = 0,1, and a = 2, and p(0) = P(X < 0)—P(X < 0) = 1/3,
etc. We find a 0 1/2 3/4

p(a) 1/3 1/6 1/2.
4.4a By conditioning one finds that each coin has probability 2p—p? to give heads.

The outcomes of the coins are independent, so the total number of heads has a
binomial distribution with parameters n and 2p — p?.

4.4 b Since the total number of heads has a binomial distribution with parameters
n and 2p — p?, we find for k=0,1,...,n,

px (k) = (Z) (2p _pz)k(pz — 2%+ 1)"*1@7

and px (k) = 0 otherwise.

4.5 In one throw of a die one cannot exceed 6, so F(1) = P(X <1) = 0. Since
P(X =1) = 0, we find that F(2) = P(X = 2), and from Table 4.1 it follows that
F(2) = 21/36. No matter the outcomes, after seven throws we have that the sum
certainly exceeds 6, so F(7) = 1.

4.6 a Let (w1,ws2,ws) denote the outcome of the three draws, where wy is the out-
come of the first draw, wa the outcome of the second draw, and w3 the outcome of
the third one. Then the sample space € is given by

Q = {(w1,w2,w3) : w1, w2, w3 € {1,2,3} }
={(1,1,1),(1,1,2),...,(1,1,6),(1,2,1),...,(3,3,3)},
and

X (w1, wa,ws) = %

The possible outcomes of X are 1, %, %, 2, %, 2,3. Furthermore, {X = 1} = {(1,1,1)},
SO P(X: 1) =21 and

for (w1, ws,ws) € Q.

27
¢_2 o4 3
X =21=1{(1,1,2),(1,2,1),(2,1,1 o P(X=2)=2.
{ 3 {(,7)7(77)7(77)}, SO < 3) 27

Since
(X =21 ={(,1,3),(1,3,1,3,1,1),(1,2,2), (2,1,2), (2,2, 1)},

we find that P(X = g) = 2%, etc. Continuing in this way we find that the probability

mass function pg of X is given by
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e 1 4 3 9 1 8 3
(@) - i 8 7 & 3 1
bx(a) 37 37 27 327 27 27 27

4.6 b Setting, for ¢ = 1,2, 3,

yoo JUir X<z
0 if X;>2,

and Y = Y1 + Y2 4 Y3, then Y is Bin(3, 3). It follows that the probability that
exactly two draws are smaller than 2 is equal to

o= (0 ()2

Another way to find this answer is to realize that the event that exactly two draws
are equal to 1 is equal to

{(1,1,2),(1,1,3),(1,2,1),(1,3,1),(2,1,1),(3,1,1)}.

4.7 a Setting X; = 1 if the ith lamp is defective, and X; = 0 if not, for i =
1,2,...,1000, we see that X; is a Ber(0.001) distributed random variable. Assuming
that these X; are independent, we find that X (as the sum of 1000 independent
Ber(0.001) random variables) has a Bin (1000, 0.001) distribution.

4.7b Since X has a Bin(1000,0.001) distribution, these probabilities are P(X = 0) =
(29911000 — 367695, P(X =1) = 22970, = 0.36806, and P(X >2) = 1 —

P(X < 2) =0.08021.

4.8 a Assuming that O-rings fail independently of one-another, X can be seen as

the sum of six independent random variables with a Ber(0.8178) distribution. Con-

sequently, X has a Bin(6,0.8178) distribution.

4.8b Since X has a Bin(6,0.8178) distribution, we find that P(X >1) = 1 —
P(X =0)=1—(1—0.8178)% = 0.9999634.

4.9a With these assumptions, X has a Bin(6,0.0137) distribution, so we find
that the probability that during a launch at least one O-ring fails is equal to
P(X>1)=1-P(X =0) =1—(1—-0.0137)° = 0.079436. But then the proba-
bility, that at least one O-ring fails for the first time during the 24th launch is equal
to (P(X = 0)) *P(X > 1) =0.01184.

4.9b The probability that no O-ring fails during a launch is P(X =0) = (
0.0137)° = 0.92056, so no O-ring fails during 24 launches is equal to (P(X = 0) )
0.13718.

4.10 a Each R; has a Bernoulli distribution, because it can only attain the values 0
and 1. The parameter is p = P(R; = 1). It is not easy to determine P(R; = 1), but
it is fairly easy to determine P(R; = 0). The event {R; = 0} occurs when none of
the m people has chosen the ith floor. Since they make their choices independently
of each other, and each floor is selected by each of these m people with probability

1/21, it follows that
20\ ™
P(Ri=0)= (=
(=0 = ()

Now use that p = P(R; = 1) =1 — P(R; = 0) to find the desired answer.
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4.10b If {R; = 0},...,{R20 = 0}, we must have that {Rz1 = 1}, so we cannot
conclude that the events {R1 = a1 },...,{R21 = a21}, where a; is 0 or 1, are indepen-
dent. Consequently, we cannot use the argument from Section 4.3 to conclude that
Sm is Bin(21,p). In fact, S, is not Bin(21,p) distributed, as the following shows.
The elevator will stop at least once, so P(S» = 0) = 0. However, if S, would have
a Bin(21,p) distribution, then P(S,, = 0) = (1 —p)*' > 0, which is a contradiction.

4.10 ¢ This exercise is a variation on finding the probability of no coincident birth-
days from Section 3.2. For m = 2, So = 1 occurs precisely if the two persons entering
the elevator select the same floor. The first person selects any of the 21 floors, the
second selects the same floor with probability 1/21, so P(S2 = 1) = 1/21. For m = 3,
S3 = 1 occurs if the second and third persons entering the elevator both select the
same floor as was selected by the first person, so P(S3 =1) = (1/21)® = 1/441.
Furthermore, Ss = 3 occurs precisely when all three persons choose a different floor.
Since there are 21 - 20 - 19 ways to do this out of a total of 212 possible ways, we
find that P(Ss = 3) = 380/441. Since Ss can only attain the values 1,2, 3, it follows
that P(S5 =2) =1 — P(Ss = 1) — P(S5 = 3) = 60/441.

4.11 Since the lotteries are different, the event to win something (or not) in one
lottery is independent of the other. So the probability to win a prize the first time
you play is pip2 + p1(1 — p2) + (1 — p1)p2. Clearly M has a geometric distribution,
with parameter p = pip2 + p1(1 — p2) + (1 — p1)p2.

4.12 The “probability that your friend wins” is equal to
1 1
1—(1-p? 2-p

The procedure is favorable to your friend if 1/(2—p) > 1/2, and this is true if p > 0.

p+p(l—p)° +p1—p) +---=p

4.13 a Since we wait for the first time we draw the marked bolt in independent
draws, each with a Ber(p) distribution, where p is the probability to draw the bolt
(so p=1/N), we find, using a reasoning as in Section 4.4, that X has a Geo(1/N)
distribution.

4.13b Clearly, P(Y =1) = 1/N. Let D; be the event that the marked bolt was
drawn (for the first time) in the ith draw. For k = 2,..., N we have that
P(Y =k)=P(DiNn---ND;i_1NDy)
=P(Dy|DiN---NDi_y)-P(DIN---NDj_1).
Now P(Dy | DfN---NDi 1) = 5=i51

P(DiN---NDg_1) =P(Dr_1|DiN---NDi_s)-P(DIN---NDj_5),

and
1
P(Dy_1|DiN---NDp_1)=1—P(Dg—1|DiN---NDj_1)=1— ———.
(Di—1| D1 k1) (Dr—1]D1 k—1) N_k+2
Continuing in this way, we find after k steps that
1 N—-k+1 N—-k+2 N-2 N-1 1

P(Y = k)

" N_k+1 N—k+2 N—k+3 N-1 N ~— N

See also Section 9.3, where the distribution of Y is derived in a different way.
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4.13 ¢ For k=0,1,...,r, the probability P(Z = k) is equal to the number of ways
the event {Z = k} can occur, divided by the number of ways (]Z) we can select r
objects from N objects, see also Section 4.3. Since one can select k marked bolts
from m marked ones in (') ways, and r — k nonmarked bolts from N —m nonmarked

ones in (N_m

T ways, it follows that

m\ (N—m
P(Z=k) = (’“)((Nr)‘k) for k=0,1,2,...,r.

4.14 a Denoting ‘heads’ by H and ‘tails’ by T, the event {X = 2} occurs if we have
thrown HH, i.e, if the outcome of both the first and the second throw was ‘heads’.
Since the probability of ‘heads’ is p, we find that P(X = 2) = p-p = p®. Furthermore,
X = 3 occurs if we either have thrown HTH, or THH, and since the probability
of throwing ‘tails’ is 1 — p, we find that P(X =3)=p- (1 —p)-p+ (1 —p)-p-p=
2p*(1 —p). Similarly, X = 4 can only occur if we throw TTHH, THTH, or HTTH,
so P(X =4) = 3p*(1 — p)*.

4.14b If X = n, then the nth throw was heads (denoted by H), and all but one of
the previous n — 1 throws were tails (denoted by T'). So the possible outcomes are

HTT---TH, THTT---TH, TTHTT.---TH, ..., TT---THH
—_—— —_—— —_—— —_——
n—2 times n—3 times n—4 times n—2times

Notice there are exactly (”Il) =n — 1 of such possible outcomes, each with proba-
bility p*(1 — p)" 2, s0 P(X = n) = (n — 1)p*(1 — p)"~ 2, for n > 2.

5.1a

Sketch of probability density f: #

5.1b Since f(z) = 0 for z < 0, F(b) = 0 for b < 0. For 0 < b < 1 we compute
F(b) = [°_ f(z)dz = [} 3/4dz = 3b/4. Since f(z) = 0 for 1 < z < 2, F(b) =
F(1) =3/4for1 <b <2 For2<b< 3 we compute F(b) = ffoof(x)dx =
S f@)da+ f) f(z)de = F(1) + [ 1/4da = 3/4+ (1/4)(b— 2) = b/4+ 1/4. Since
fx)y=0forz >3, F(b)=F(3) =1 for b > 3.

Sketch of distribution function F": “—

5.2 The event {1/2 < X < 3/4} can be written as
{1/2< X <3/4} ={X <3/4}n{X <1/2}°={X <3/4}\ {X < 1/2}.

Noting that {X <1/2} C {X < 3/4} we find

o(pexsd)rles) (=) -0 - &

(cf. Exercise 2.5.)
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5.3a From P(X <3/4) =P(X <1/4)+P(1/4 < X < 3/4) we obtain

1 3 3 1 3 1 11
el <2) = <2) - <= )=F(2)-F(=)==.
P<4<X—4> P<X—4> P<X—4> F(4) F(4) 16

5.3 b The probability density function f(z) of X is obtained by differentiating the
distribution function F(z): f(x) = d/dz(22® — 2*) = 4z — 42° for 0 < 2 < 1 (and
f(z) = 0 elsewhere).
5.4a Let T be the the time until the next arrival of a bus. Then T has U(4,6)
distribution. Hence P(X < 4.5) = P(T < 4.5) = [,;"*1/2dz = 1/4.
5.4b Since Jensen leaves when the next bus arrives after more than 5 minutes,
P(X =5)=P(T>5) = [FLdz=1/2.
5.4 c Since P(X =5) = 0.5 > 0, X cannot be continuous. Since X can take any of
the uncountable values in [4, 5], it can also not be discrete.

5.5a A probability density f has to satisfy (I) f(z) > 0 for all z, and (II)
70, f(x)dz = 1. Start with property (II):

0o -2 3 _2 3
/ f(z)dz 2/ (cz+3) dx—i—/ (B8—cx)dx = [ExQ + 31’] + [3;18 — EmQ] =6—>5c.
oo _3 9 2 -3 2 12
So (II) leads to the conclusion that ¢ = 1. Substituting this yields f(z) = z + 3 for
—3<z< -2 and f(z) =3 —z for 2 <z <3 (and f(x) = 0 elsewhere), so f also
satisfies (I).

5.5b Since f(z) = 0 for z < =3, F(b) = 0 for b < —3. For -3 < b < —2 we
compute F(b) = ffoo f(z)dz = f_b3(a: +3)dz = (b + 3)?/2. Similarly one finds
Fb) =1—-3-0b)?%/2for 2 <b <3 For -2 < 2 <2 f(z) = 0, and hence
F(b) = F(—2) = 1/2 for —2 < b < 2. Finally F(b) = 1 for b > 3.

5.6 If X has an Ezp(0.2) distribution, then its distribution function is given by
F(b)=1—e*. Hence P(X >5)=1-P(X <5)=1—F(5) =e °* Here A = 0.2,
so P(X >5)=e"' =0.367879....

5.7 a P(failure) = P(S < 0.55) = fi)ff f(x)dz = f00'55 4o dx + f9555(4 —4z)dx =
0.595.

5.7b The 50-th percentile or median go.5 is obtained by solving F'(go.5) = 0.5. For
b < 0.5 we obtain F(b) = f; 4z dx = 2b°. Here F(qo.5) = qo.5 yields 2¢3.5 = 0.5, or
go.s = 0.5.

5.8 a The probability density g(y) = 1/(2,/Ty) has an asymptote in 0 and decreases
to 1/2r in the point r. Outside [0, r] the function is 0.

5.8 b The second darter is better: for each 0 < b < r one has (b/r)? < \/b/r so the
second darter always has a larger probability to get closer to the center.

5.8 ¢ Any function F that is 0 left from 0, increasing on [0, r], takes the value 0.9
in /10, and takes the value 1 in 7 and to the right of r is a correct answer to this
question.

5.9 a The area of a triangle is 1/2 times base times height. So the largest area that
can occur is 1/2 (when the y-coordinate of a point is 1).

The event {A < 1/4} occurs if and only if the y-coordinate of the random point is
at most 1/2, so the answer is {(z,y):2<2<3,1<y<3/2}.
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5.9b Generalising a we see that A < a if and only if the y-coordinate of the random
point is at most a. Hence f(a) = P(A < a) = a for 0 < a < 1. Furthermore F(a) =0
for a < 0, and F(a) =1 for a > 1.

5.9 ¢ Differentiating F yields f(z) =2 for 0 <z < 1/2; f(z) = 0 elsewhere.

5.10 The residence time T" has an Exp(0.5) distribution, so its distribution function
is F(x) =1 —e "2 We are looking for P(T < 2) = F(2) =1—e ' =63.2%.

5.11 We have to solve 1 — e *® = 1/2, or e *® = 1/2, which means that —Az =
In(1/2) or z = In(2)/A.

5.12 We have to solve 1 — 27 =1/2, or =% = 1/2, which means that z* = 2 or
z =2,

5.13 a This follows with a change of variable transformation  — —x in the integral:
®(—a) = ["2 p(x)de = [T ¢(—z)dz = [ ¢(x)dz =1 — P(a).

5.13 b This is straightforward: P(Z < —2) = ®(—-2) =1 — ®(2) = 0.0228.

5.14 The 10-th percentile go.1 is given by ®(go.1) = 0.1. To solve this we have to
use Table ??. Since the table only contains tail probabilities larger than 1/2, we
have to use the symmetry of the normal distribution (¢(—z) = ¢(x)): ®(a) = 0.1 if
and only if ®(—a) = 0.9 if and only if 1 — ®(a) = 0.9. This gives —go.1 = 1.28, hence
qo.1 = —1.28.

6.1a IfO<U< L, put X =1,if : <U < 2, put X =2, etc., ie, if (i —1)/6 <
U < i/6, then set X =1.

6.1b The number 6U + 1 is in the interval [1,7], so Y is one of the numbers 1, 2,
3, ..., 7. For k=1,2,...,6 we see that P(Y =k) = P(i <6U+1<i+1) = ¢;
PY=7=P6U+1=7)=PU=1)=0.

6.2 a Substitute u = 0.3782739 in z = 1+ 2/u: x = 1 + 21/0.3782739 = 2.2300795.

6.2b The map u +— 1+ 24/u is increasing, so u = 0.3 will result in a smaller value,
since 0.3 < 0.3782739.

6.2 ¢ Any number u smaller than 0.3782739 will result in a smaller realization than
the one found in a. This happens with probability P(U < 0.3782739) = 0.3782739.

6.3 The random variable Z attains values in the interval [0, 1], so to show that its
distribution is the U(0,1), it suffices to show that Fz(a) = a, for 0 < a < 1. We
find:

Fz(a)=P(Z<a)=P1-U<a)=PU>1—-a)=1-Fy(l—a) =1—(1—a) = a.

6.4 Since 0 <U <1,1< X < 3follows, so Fx(a) =0 for a < 1 and Fx(a) =1 for
a > 3. If we show that Fx(a) = F(a) for 1 < a < 3, then we have shown Fx = F:

Fx(a) = P(X < a) :P(1+2¢ﬁ§ a)

=P(VU < (a=1)/2) =P(U < ((a = 1)/2)°)

—_

— Ry <7(a - 1)2> = 1~ 1 = F(a).

>



29.1 Full solutions 471

6.5 We see that

X<a & -lhU<a & ImU>-a & U>e ?
and so P(X <a) = P(U > e_“) =1- P(U < e_“) = 1 — e % where we use
P(U <p)=pfor 0 <p <1 applied to p =e™* (remember that a > 0).

6.6 We know that X = —3InU has an Ezp(2) distribution when U is U(0,1).
Inverting this relationship, we find U = ¢~%*, which should be the way to get U
from X. We check this, for 0 < a < 1:

P(U < a) = P(e_QX < a) = P(~2X < Ina)
:P(X > —%hla) — ¢ 2~z lna)
:aZFU(a).

6.7 We need to obtain F'™¥, and do this by solving F(x) = u, for 0 < u < 1:

l-e ™ =y & e =1-u « —52° = In(1 — u)

& 2’ =-02Im(1-u) < z=+/-02In(1—u).

The solution is Z = /—0.2InU (replacing 1 — U by U, see Exercise 6.3). Note that
Z? has an Ezp(5) distribution.

6.8 We need to solve F(x) = u for 0 < u < 1 to obtain F™ (x):

l-z2%=u & l-u=z" & w:(l—u)fé.
So, X =(1— U)_% has a Par(3) distribution, and the same holds for X = U3 =
1/VU.
6.9 a For six of the eight possible outcomes our algorithm terminates succesfully,
so the probability of success is 6/8 = 3/4.

6.9 b If the first toss (of the three coins) is unsuccessful, we try again, and repeat
until the first success. This way, we generate a sequence of Ber(3/4) trials and stop
after the first success. From Section 4.4 we know that the number N of trials needed
has a Geo(3/4) distribution.

6.10 a Define random variables B; = 1 if U; < p and B; = 0 if U; > p. Then
P(B;i=1) = p and P(B; =0) = 1 — p: each B; has a Ber(p) distribution. If B; =
By = --- = Br_1 = 0 and By = 1, then N = k, i.e., N is the position in the
sequence of Bernoulli random variables, where the first 1 occurs. This is a Geo(p)

distribution. This can be verified by computing the probability mass function: for
k>1,

P(N=k)=P(By=By=---=By_1=0,B, =1)
=P(B; =0)P(By=0) --- P(By_1 = 0) P(By = 1)

=(1-p""p.



472 Full solutions from MIPS: DO NOT DISTRIBUTE

6.10b If Y is (a real number!) greater than n, then rounding upwards means we
obtain m 4+ 1 or higher, so {Y > n} = {Z > n+ 1} = {Z > n}. Therefore,
P(Z>n)=P(Y >n)=e¢ " = (efk)n‘ From A = —In(1 — p) we see: e * =1 — p,
so the last probability is (1 — p)"*. From P(Z >n —1) = P(Z =n) + P(Z > n) we
find: P(Z=n)=P(Z>n—-1)-PZ>n)=01-p)" ' —~1-p)"=1-p)"'p
Z has a Geo(p) distribution.

6.11 a There are many possibilities, one is: Y1 = g + 0.5 + Z1, where g and Z; are
as defined earlier. In this case, the bribed jury member adds a bonus of 0.5 points.
Of course, this is assuming that she was bribed to support the candidate. If she was
bribed against her, Y1 = g — 0.5 4+ Z; would be more appropriate.

6.11 b We call the resulting deviation R and it is the average of Z1, Zs, ..., Z7 after
we have removed two of them, chosen randomly. This can be done as follows. Let [
and J be independent random variables, such that P(I =n) =1/7forn=1,2,...,7
and P(J=m) = 1/6 for m = 1,2,...,6. Put K = J if J < I; otherwise, put
K = J + 1. Now, the pair {I, K} is a random pair chosen from the set of indices
{1,2,...,7}. This can be verified, for example, the probability that 1 and 2 are
selected equals P(I =1,J =1)+ P(I =2,J =1) = 1/21, which is correct, because
there are (7) = 21 pairs to choose from, each we the same probability.

Removing Z; and Zx from the jury list, we can compute R as the average of
the remaining ones. We expect this rule to be more sensitive to bribery, because
the bribed jury member is more likely to have assigned one of the extreme scores
(highest or lowest). With either of the two other rules, this score has no influence
at all, because it is not taken into account.

6.12 We need to generate stock prices for the next five years, or 60 months. So we
need sixty U(0,1) random variables Ui, ..., Uso. Let S; denote the stock price in
month 4, and set So = 100, the initial stock price. From the U; we obtain the stock
movement, as follows, for i =1,2,...:

0.95S5;,_1 ifU; < 0.25,
Si =< Si_1 if 0.25 < U; <0.75,
1.058;-1 if U; > 0.75.

We have carried this out, using the realizations below:

1-10: 0.72 0.03 0.01 0.81 0.97 0.31 0.76 0.70 0.71 0.25
11-20: 0.88 0.25 0.89 0.95 0.82 0.52 0.37 0.40 0.82 0.04
21-30: 0.38 0.88 0.81 0.09 0.36 0.93 0.00 0.14 0.74 0.48
31-40: 0.34 0.34 0.37 0.30 0.74 0.03 0.16 0.92 0.25 0.20
41-50: 0.37 0.24 0.09 0.69 091 0.04 0.81 0.95 0.29 0.47
51-60: 0.19 0.76 0.98 0.31 0.70 0.36 0.56 0.22 0.78 0.41

We do not list all the stock prices, just the ones that matter for our investment
strategy (you can verify this). We first wait until the price drops below € 95, which
happens at S4 = 94.76. Our money has been in the bank for four months, so we own
€1000 - 1.005* = €1020.15, for which we can buy 1020.15/94.76 = 10.77 shares.
Next we wait until the price hits € 110, this happens at Si5 = 114.61. We sell the
our shares for € 10.77 - 114.61 = € 1233.85, and put the money in the bank. At
Si2 = 92.19 we buy stock again, for the € 1233.85 - 1.005%7 = € 1411.71 that has
accrued in the bank. We can buy 15.31 shares. For the rest of the five year period
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nothing happens, the final price is S¢o = 100.63, which puts the value of our portfolio
at € 1540.65.

For a real simulation the above should be repeated, say, one thousand times. The
one thousand net results then give us an impression of the probability distribution
that corresponds to this model and strategy.

6.13 Set p = P(H). Toss the coin twice. If HT occurs, I win; if TH occurs, you
win; if TT or HH occurs, we repeat. Since P(HT) = P(TH) = p(1 — p), we have
the same probability of winning. The probability that the game ends is 2p (1 — p)
for each double toss. So, if 2N is the total number of tosses needed, where N has a
Geo(2p (1 — p)) distribution.

7.1a Outcomes: 1, 2, 3, 4, 5, and 6. Each has probability 1/6.

7A1b ET]=2%-1+%-2+ -2 6=12(142=---46)=1
For the variance, first compute E [T?]:
1 1 1 91
S l4 T 4a...2.36=22
[ ] 6 +6 + 6 36 6
Then: Var(T) = E[TQ] (E[T )2—91—%:%.

]
7.2a Here E[X] = (-1)P(X = -1)40-P(X =0)+1-P(X =1) =—140+2 =L
7.2b The discrete random variable Y can take the values 0 and 1. The probabil-
ities are P(Y =0) = P(X*=0) = P(X =0) = 2, and P(Y = 1) = P(X2 =1) =

P(X=-1)+P(X=1)=1+ 2 = 2. Moreover, E[Y] =0-2 +1- E

7.2 ¢ According to the change of variable formula: E [X*] = (—1)*-1+ O2 24122 =
3

=S

7.2d With the alternative expression for the variance: Var(X) = E [X*]—(E[X])* =
=i

7.3 Since Var(X) = E[X?] — (E[X])?,we find E[X?] = Var(X) + (E[X])* = 7.
7.4 By the change of units rule: E[3 — 2X] =3 —-2E[X] = —1, and Var(3 — 2X) =
4Var(X) = 16.

7.5 If X has a Ber(p) distribution, then E[X] =0-(1—p)+1-p=pand E[X]* =
0-(1—p)+1p=p. So Var(X) = E[X]* — (E[X])* =p —p* = p(1 - p).

7.6 Since f is increasing on the interval [2, 3] we know from the interpretation of
expectation as center of grav1ty that the expectation should lie closer to 3 than to 2.

The computation: E[Z] = [; 22%dz = [%24]3 22,

7.7 We use the rule for expectation and variance under change of units. First,
E[X] = fol z- (e —42®) dx = fol 4x® — 4zt dw = [(4/32° — 4/5975)](1) =4/3—-4/5 =
8/15. Then, Changmg umts E[2X + 3] = 2-8/15+3 = 61/15. For the variance, first
compute E[ Y = fo (42 — 423)dz = 1/3. Hence Var(X) = 1/3 — (8/15)% =
11/225, and changing unlts Var(2X + 3) = 44/225.

7.8 Let f be the probability density of X Then f(x) = diF(:c) = 2 — 2z for

0 <z <1, and f(z) =0 elsewhere. So E[X f+°° zf(z)dz f01(2:r —22?)dx =
[2? — 2% = L
37 10— 3"

7.9a If X has U(a, 3) distribution, then X has probability density function f(x) =
1/(8 — a) for a <z < 3, and 0 elsewhere. So

B B 2 _ o2
BIX) = [/ -ado =1/ -0 [o2| =30 fan),



474 Full solutions from MIPS: DO NOT DISTRIBUTE

7.9b First compute E[X?]: B[X] = [ 20 do = 1 E22% = 1(5% 4 af + o?),

Then Var(X) = E[X?] — (E[X])? = 2(B° + af + o) — J(a+ B)* = 5(8 — o)”.
A quicker way to do this is to note that X has the same variance as a U(0, 5 — «)
distribution U. Hence Var(X) = Var(U) = & (8 — a)*.

2
7.10a If X has an Ezp(X) distribution, then X has probability density f(X) =
Ae™* for 2 > 0, and f(z) = 0 elsewhere. So, using the partial integration formula,

E[X] = [ aXe M dz = [—xefm]zo — [ —eMda = [—%efm];o = 1.

7.10b First compute E [Xz], using partial integration, and using the result from
part a:

E [XQ] :/“nge—m de = [_xze—xw]oo_/oo_we_m do — ;/oome_m da :%_
0 0 0

0
Then Var(X) = E[X]* = (E[X])’ = & — (3)* = .
7.11a If X has a Par(a) distribution, then X has p.d f(z) = axz™* ! forz > 1, and
f(z) = 0 elsewhere. So the Par(2) distribution has probability density f(z) = 2273,
and then E[X] = [Fz-227%de =2 [T 2 % dz = [-227'] 7 =2,

7.11b Now X has probability density function f(z) = 227*/2. So now E[X]
i 3R s = [V = oo

7.11c In the general case E[X] = [[FTz_2xdz =o [Tz %dz =a [
o+

oo+l ] 0

—a+1 1

o
a—17

7.12 From 7.11c we already know that E[X] = /(o — 1) if and only of a > 1.
Now we compute E[X?] : E[X?] = o [[“ 27" dz = [a- 2_7::22]?0 = —% provided
o > 2 (otherwise E [X?] = c0). It follow that Var(X) exists only if a > 2 , and then

2 « a27 feY 7(12 a «
Var(X) = E[X]* = (B[X])* = 5% — o357 = [ T l = CEECEE
7.13 Since Var(X) = E[(X — B[X])*] > 0, but also Var(X) = E[X?] - (E[X]?)
we must have that E [X?] > (E[X])*.

7.14 The area of a triangle is half the length of the base time the height. Hence
A= 3Y, where Y is U(0,1) distributed. It follows that E[A] = E[Y] = 1.

7.15a We use the change-of-units rule for the expectation twice:

provided 7% — 0 as & — oo, which happens for all a > 1.

Var(rX) = E[(rX — E[rX])’] =E[(rX — rE[X])?]
=E[r*(X - E[X])’] =r°E[(X - E[X])?] = r*Var(X).
7.15b Now we use the change-of-units rule for the expectation once:
Var(X +s) = E[(X +5) — E[X + s])°]
=E[((X +s) —E[X] +5)’] =E[(X - E[X])*] = Var(X).
7.15c With first b, and then a: Var(rX + s) = Var(rX) = r*Var(X) .
o+

7.16 We have to use partial integration: E[X] = fol —42*Inzdr = [— 1231n x]o

3
14 3 1 _ 4 1 2 __ 4
037 zde=3[yetdz=3.
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7.17a Since a; > 0 and p; > 0 it must follow that aips + - - + arp, > 0. So
0=E[U] =aip1 + - +arpr > 0. As we may assume that all p; > 0, it follows that
ag=azx=---=a, =0.

7.17b Let m = E[V] = pibi+- - -+p,-b,. Then the random variable U = (V —E[V])?
takes the values a1 = (b1 —m)?,...,a, = (b, —m)?. Since E[U] = Var(V)) = 0, part
a tells us that 0 = a1 = (b1 — m)?,...,0 = a, = (b, — m)> But this is only
possible if b1 = m,...,b, = m. Since m = E[V], this is the same as saying that
P(V =E[V]) =1.

8.1 The random variable Y can take the values |80 — 100| = 20,|90 — 100| =
10,100 — 100| = 0,]110 —100] = 10 and |120 — 100| = 20. We see that the values are
0,10 and 20, and the latter two occur in two ways: P(Y = 0) = P(X = 100) = 0.2,
but P(Y =10) = P(X = 110) + P(X = 90) = 0.4; P(Y =20) = P(X = 120) +
P(X = 80) = 0.4.

8.2 a First we determine the possible values that Y can take. Here these are —1,0,

and 1. Then we investigate which z-values lead to these y-values and sum the prob-
abilities of the z-values to obtain the probability of the y-value. For instance,

and similarly P(Z = —1) =1/3 and P(Z =1) = 1/6.
8.2 ¢ Since for any a one has sin(a) 4 cos?(a) = 1, W can only take the value 1,
soP(W=1)=1.
8.3a Let F be the distribution function of U, and G the distribution function of
V. Then we know that F(z) =0 forz < 1,F(z) =z for 0 <2z <1, and F(z) =1
for x > 1. Thus
y—1 y—1

Gly) =P(V <y) =PU+T <y =P(U <L 1) =221
provided 0 < (y — 7)/2 < 1 which happens if and only if 0 < y — 7 < 2 if and only
7 <y < 9. Furthermore, G(y) =0 if y < 7 and G(y) = 1 if y > 9. We recognize G
as the distribution function of a U(7,9) random variable.

8.3 b Let F and G be as before. Now

Gy) =P(V <y) =P(U+s<y) =P(U< L2) = L2,
provided 0 < (y — s)/r < 1, which happens if and only if 0 <y — s < r (note that
we use that r > 0), if and only if s < y < s+ r. We see that G has a U(s,s+ )
distribution.
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8.4 a Let F be the distribution function of X, and G that of Y. Then we know that
F(z) =1—e"*/? for > 0, and we find that G(y) = P(Y <y) = P(3X <y) =
P(X <2y) = 1—e Y. We recognize G as the distribution function of an Ezp(1)
distribution.

8.4b Let F' be the distribution function of X, and G that of Y. Then we know
that F(z) = 1 —e > for > 0, and we find that G(y) = P(Y < y) = POX <y) =
P(X <y/X\) =1 —eY. We recognize G as the distribution function of an Ezp(1)

distribution.

8.5a For 0 < b < 2 we have that Fx(b) = Ob 3202 - 2)de = [32% — im?’]g =

%bQ — %bs. Furthermore Fx(b) = 0 for b < 0, and Fx(b) =1 for b > 2.

8.5b For 0 < y < /2 we have Fy(y) = P(Y <y) = P(\/YS y) =P(X <y?) =
3.4 1,6

4 1Y

8.5 ¢ We simply differentiate Fy : fy (y) = 4 Fy(y) = 3y® —3y°/2 for 0 <y < V2,
and fy (y) = 0 elsewhere.

8.6 a Compute the distribution function of Y : Fy(y) = P(Y <y) =P(% <y) =

P(x>1) = 1-P(X<1) = 1 Fx(}), where you use that P(X < 1) =
P (X < i) since X has a continuous distribution. Differentiating we obtain: fy (y) =
Sy (y) = & (1= Fx(3)) = 52 fx(3) for y > 0 (fy(y) = 0 for y < 0).

8.6 b Applying part a with Z = 1/Y we obtain fz(z) = z%fy(i) Then applying
a again: fz(z) = Z%fy(%) = Z%fo(ﬁ)) = Ix(2).

This is of course what should happen: Z =1/Y =1/(1/X) = X, so Z and X have
the same probability density function.

8.7 Let X be any random variable that only takes positive values, and let ¥ =
In(X). Then for y > 0:

Fy(y) = P(Y < y) = P(In(X) < y) = P(X < &¥) = Fx(e").

If X has a Par(a) distribution, then Fx(z) =1 — 2z~ for > 1. Hence Fy (y) =
1 —e for y > 0 is the distribution function of Y. We recognize this as the
distribution function of an Exp(«) distribution.

8.8 Let X be any random variable that only takes positive values, and let W =
X'/ /X. Then for w > 0 :

F(w) = P(W < w) = P(X"/*/A <w) = P(X < (w)?) = Fx((hw)®).

If X has an Ezp(1) distribution, then Fx(z) =1 — e for z > 0. Hence Fiw (w) =
1—e~ A% for w > 0.

89 If Y = —X, then Fy(y) = PY<y) = P(-X<y) = P(X>—y) =
1— Fx(—y) for all Y (where you use that X has a continuous distribution). Differ-
entiating we obtain fy (y) = fx(—y) for all y.

8.10 Because of symmetry: P(X > 3) = 0.500. Furthermore: 02 =4,50 0 = 2.
Then Z = (X —3)/2 is an N(0,1) distributed random variable, so that P(X < 1) =
P(X—-3)/2)<(1-3)/2=P(Z< -1)=P(Z >1)=0.1587.
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8.11 Since —g is a convex function, Jensen’s inequality yields that —g(E[X]) <
E[—g(X)]. Since E[—g(X)] = —E[g(X)], the inequality follows by multiplying both
sides by —1.

8.12a The possible values Y can take are vO = 0, v1 = 1, v/100 = 10, and
/10000 = 100. Hence the probability mass function is given by

y 0 1 10 100
PY =y)

11 1 1
4 4 4 4

8.12b Compute the second derivative: % T = —ix_3/2 < 0. Hence g(z) = —/z
is a convex function. Jensen’s inequality yields that /E[X] > E [\/ X ]

8.12 ¢ We obtain /E[X] = /(0 + 1 + 100 + 10000)/4 = 50.25, but
E [\/7(] = E[Y] = (041410 4 100) /4 = 27.75.

8.13 On the interval [m, 27] the function sinw is a convex function, so by Jensen’s
inequality sin(E [W]) < E[sin(W)]]. Verified by computations : sin(E[W]) = sin(2n)
—1<E[sin(W)] = ff” sin(w) /7 dw = [~ cos(w) /7|Z" = —2/7.

8.14a Anexampleis X withP(X = —-1)=P(X =1) = . ThenE[X] = - (-1)+
3-1=0andalso E[X’] =% (-1)+3-(1)=0.

-2

8.14b The function g(x) = 2* is strictly convex on the interval (0,00). Hence if
X >0 (and X is not constant) the inequality will hold.

8.15a We know that P(Z < 2) = [P(X1 < 2)]?. So Fz(z) = 2® for 0 < 2 < 1,
and fz(z) = 2z on this interval. Therefore E[Z] = fol 2z°dz = 2. For V we have
Fy(v) =1— (1 —v)? =2v —° Hence fv(v) = 2 — 2v. Therefore E[V] = f01(2v -
20%)dv=1-2/3=1/3.

8.15b For general n we have Fz(z) = 2" for 0 < z < 1, and fz(z) = nz""".
Therefore E[Z] = fol nz"dz = ;5. For V we have Fv(v) = 1 — (1 —v)", and
fv(v) =n(1 —v)"!. Therefore E[V] = fol no(l—v)" tdv = fol n(l—uw)u" tdu =
nfol u "t du — nfol udu=mn.g —noag = A

8.15¢ Since ¥; = 1 — X; are also uniform we get E[Z] = E[max{Y1,...,Yn}] =
Emax{l — Xi,...,1 - X,}|=1—-Emin{Xy,..., X,}]=1-E[V].

8.16 a Suppose first that a < b Then min{a,b} = a , and also |a — b] = b — a. So
a+b—|a—b] = a+b—b+a = 2a, and the formula holds. If @ > b then min{a, b} = b,
and a+b—]a—b=a+b—a+b=2b, and the formula holds also for this case.

8.16 b From part a and linearity of expectations we have
. 1 1 1
Elmin{X,Y}] = E[(X +Y ~ |X - ¥|)/2| = JB[X] + ;E[Y] - JB[X ~ ¥]]
1
= E[X] - 3B[IX ~ Y]],

since E[X] = E[Y].
8.16 ¢ From b we obtain, since E[|] X — Y| > 0 that E[min{X,Y}] < E[X]. In-

terchanging X and Y we also have E[min{X,Y}] < E[Y]. Combining these two we
have inequalities we obtain E [min{X,Y}] < min{E[X],E[Y]}.
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8.17a For n = 2 : if 1 < z then min{zi,z2} = =1 and max{—z1, —z2} = —xz;
since —x1 > —x2; similarly for the case x1 > x2. In general, if z; is the smallest of
Zi,...,%n then —x; will be the largest of —x1,..., —xn.

8.17b Using part a we have

Fy(a) = P(min{X1,...,Xn} <a) =P(—max{—-X1,...,— X} < a)
= P(max{—X1,...,—Xn} > —a) =1 —P(max{—X1,...,—X,} < —a)
=1-(P(-X1<-a)"=1-(1-P(X: <a)",

using Exercise 8.9 in the last step.

8.18 The distribution function of each of the X; is F(z) = 1 — e . Then the
distribution function of V is 1 — (1 — F(x))" = 1 — e~ *"". This is the distribution
function of an Exp(n)) random variable.

8.19 a This happens for all ¢ in the interval [7/4, 7 /2], which corresponds to the
upper right quarter of the circle.

8.19b Since {Z <t} = {X < arctan(t)}, we obtain
Fz(t) =P(Z <t)=P(X < arctan(t)) = % + 1 arctan(t).
T

8.19 ¢ Differentiating Fz we obtain that the probability density function of Z is

fz(z) = %Fz( )= % (%—i— %arctan(z)) = ﬁ for —oo0 <z < o0.
9.1 For a and b from 1 to 4 we have
P(X:a):P(X:a,Y:1)+--‘+P(X=a,Y:4):i,
and 1
P(Y =b) =P(X =LY =b) +- -+ P(X =4,Y =) = 7.

9.2a From P(X =1,Y =1) =1/2, P(X = 1) = 2/3, and the fact that P(X = 1) =
P(X=1Y =1) + P(X =1,Y = 1), it follows that P(X =1,Y = —1) = 1/6.
Since P(Y =1) =1/2and P(X =1,Y =1) = 1/2, we must have: P(X =0,Y =1)
and P(X = 2,Y = 1) are both zero. From this and the fact that P(X =0) =1/6 =
P(X = 2) one finds that P(X =0,Y =-1)=1/6 =P(X =2,Y = —-1).

9.2b Since, e.g., P(X =2,Y = 1) = 0 is different from P(X =2)P(Y =1) = ¢ - 1,
one finds that X and Y are dependent.

9.3a P(X=Y)=P(X=1,Y =1)4---+P(X =4,Y =4) =
9.3b P(X4+Y =5 =P(X=1Y=4)+P(X =2,V =3) + (X:&Y:m+
i
1<
1

N»—‘

P(X=4Y =1)=

9.3¢c P(1< X <3,
P(X =3,Y=3)=
9.3d P((X,Y) € {1}x{1@) P(X=1Y=1)4P(X =1,Y =4)4P(X =4,Y = 1)+
P(X =4,Y =4) =

Y <3)=P(X =2,Y =2)4P(X =2,Y =3)4P(X =3,Y = 2)+

.p

M»—A
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9.4 Since P(X =14,Y = j) is either 0, or is equal to 1/14 for each ¢ and j from 1
to 5, we know that all the entries of the first row and the second column of the
table are equal to 1/14. Since P(X = 1) = 1/14, this then determines the rest of
the first column (apart of the first entry it contains only zeroes). Similarly, since
P(Y =5) = 1/14 one must have that—apart from the second entry—all the entries
in the fifth row are zero. Continuing in this way we find

a
b 1 2 3 4 5 P(Y =b)

1 1/14 1/14 1/14 1/14 1/14 5/14
2 0 1/14 1/14 1/14 1/14 4/14
3 0 1/14 1/14 0 0 2/14
4
5

0 1/14 1/14 0 0 2/14
0 1/14 0 0 0 1/14

P(X =a) 1/14 5/14 4/14 2/14 2/14 1

9.5 a From the first row it follows that %6 <n< The second and third row do
n

not add extra information, so we find that 5 < 3

9.5b For any (allowed) value of  we have that P(X =1,Y =4) = 0. Since
= < P(X=1) < % and P(Y=4) = 2, we find that P(X =1,Y =4) #
P(X =1)P(Y = 4). Hence, there does not exist a value for n for which X and

Y are independent.

9.6 a U attains the values 0, 1, and 2, while V attains the values 0 and 1. Then
P(U=0,V=0)=PX=0Y=0)=PX=0PY =0) = 1, due to the inde-
pendence of X and Y. In a similar way the other joint probabilities of U and V are
obtained, yielding the following table:

1
3
<

u
v 0 1 2
0 1/4 0 1/4 1/2
1 0 1/2 0 1/2
1/4 1/2 1/4 1

9.6b Since P(U =0,V =0) = ; #  =P(U =0)P(V =0), we find that U and V/
are dependent.

9.7 a The joint probability distribution of X and Y is given by

a
b 1 2 3  P(Y=b
1 022 0.15 0.06 0.43
011 0.24 0.22 0.57

P(X=a) 033 039 0.28 1
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9.7b Since P(X =1,Y =1) = 588 o 111 2298 — p(X = 1) P(Y = 1), we find that
X and Y are dependent.

9.8 a Since X can attain the values 0 and 1 and Y the values 0 and 2, Z can attain
the values 0, 1, 2, and 3 with probabilities: P(Z =0) = P(X =0,Y =0) = 1/4,
P(Z=1) = PX=1,Y=0) = 1/4, P(Z=2) = P(X=0,Y =2) = 1/4, and
P(Z=3)=P(X=1,Y=2)=1/4.

9.8b Since X = Z — Y, X can attain the values —2, —1, 0, 1, 2, and 3 with
probabilities

P(~ :72) :P(Z:O,f/:z) =1/8,

P(~ :71) :P(Z:1,1?:2):1/8,
P(~ :0) :P(Z:O,Y:O)HD(Z:Q,Y/:Q) — 1/4,
P(~ :1) :P(Z:LY:O)—FP(Z:&Y:Q) —1/4,
P(X:Q) =P(Z=27Y/=0) =1/8,
P(X: ):P(Z:?,,Y/:o) =1/8.

We have the following table:
z -2 -1 0 1 2 3

pe(z)  1/8 1/8 1/4 1/4 1/8 1/8
9.9a One has that Fx(z) = limy_o F(z,y). So for z < 0: Fx(z) = 0, and for
x> 0: Fx(z) = F(z,00) = 1 — e~ 2*. Similarly, Fy(y) = 0 for y < 0, and for y > 0:
Fy(y) = F(oo,y) =1—e7".
9.9b For x > 0 and y > 0: f(z,y) = %F(m,y) = eV — e (V) =
2¢~ (22+y)

9.9 ¢ There are two ways to determine fx(z):

fx(z) = / flz,y)dy = / e Wy =27 forz >0
e o

and

Ix(z) = din(x) =2 forz>0.
x

Using either way one finds that fy(y) =e™¥ for y > 0.
9.9d Since F(x,y) = Fx(z)Fy(y) for all z,y, we find that X and Y are indepen-

de]l‘ .
P ( /—
1

9.10a
1
4

NS D)
<X< /gwy(1+y)dwdy

IN

>.<

IN
Wl N

=~ =
N | =
Wl =

~—
I

= Wl

2
12 3
=+ x(/ y(1+4y)dy)dz
1 1
4 3
_/5 82 . 4l
- 1 135 7207
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9.10b Since f(z,y) =0 for z <0 or y <0,
F(a,b) =P(X <a,Y <) = / / f(z,y)dy)d

a b
= / (/ Esﬂy(l +y)dy)dz = §a2b2 + gazbg.
o \Jo 5 5 5
9.10 ¢ Since f(z,y) =0 for y > 1, we find for a between 0 and 1, and b > 1,
F(a,b) =P(X <a,Y <b)=P(X <a,Y <1) = F(a,1) = a°.

Hence, applying (9.1) one finds that Fx (a) = a2, for a between 0 and 1.
9.10d Another way to obtain fx is by differentiating Fx.
9.10e f(z,y) = fx(x)fy(y), so X and Y are independent.

9.11 To determine P(X < Y') we must integrate f(x,y) over the region G of points
(x,y) in R? for which « is smaller than y:

P(X <Y)= //{(MERZK% f(z,y)dzdy
/ </ fwydm>dy—/01(/oy%$y(1+y)d)dy
7/ (/yxdx>dy:%/Oly?’(l—i-y)dy:%.

Here we used that f(z,y) = 0 for (z,y) outside the unit square.

9.12 a Since the integral over R? of the joint probability density function is equal

to 1, we find from
1 p2
/ / (3u” + 8uv) dudv = 10
o Jo

that K = 5
9.12b

sl

P2X <Y) = // i(3x2 + 8zy) dz dy
(z,y):2z<y 10

1 2

:/ / 10(3x + 8zy) dz dy
=0

= 0.45.

9.13a For r > 0, let D, be the disc with origin (0,0) and radius r. Since 1 =
S 5 fry)dedy = ffD cdzdy = ¢ area of Dy, we find that ¢ = 1/7.

9.13b Clearly Fr(r) =0 for r < 0, and Fgr(r) =1 for r > 1. For r between 0 and
L

2
FR(T):P((X,Y)EDT):// Liedy="" =2
D, T 7T
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9.13 ¢ For x between —1 and 1,

V1—22
fx(z) = e %dy = %\/1 — x2.

For x outside the interval —1,1] we have that fx(z) = 0.

9.14a Let f be the joint probability density function of the pair (X,Y), and F
their joint distribution function. Since f(z,y) = %;F(x, y), we first determine F'.
Setting G = (—o00,a] X (—o0,b], for —1 < a,b < 1, we have that
Db+1

F(a,b) = P(X,Y) € G) = %‘f“.
Furthermore, if a < —1 or b < —1, we have that F(a,b) = 0, since GNO = (. In
a similar way, we find for ¢ > 1 and —1 < b < 1 that F(a,b) = (b+ 1)/2, while
for =1 < a <1 and b > 1 we have that F(a,b) = (a + 1)/2. Finally, if a,b > 1,
then F'(a,b) = 1. Taking derivatives, it then follows that f(z,y) = 1/4 for a and b
between —1 and 1, and f(z,y) = 0 for all other values of = and y.

9.14 b Note that for z between —1 and 1, the marginal probability density function
fx of X is given by

@ = [ repa= g

and that fx(z) = 0 for all other values of x. Similarly, fy(y) = 1/2 for y between
—1 and 1, and fy(y) = 0 otherwise. But then we find that f(z,y) = fx(z)fv(y),
for all possible zs and ys, and we find that X and Y are independent, U(—1,1)
distributed random variables.

9.15a Setting O(a,b) as the set of points (z,y), for which z < a and y < b, we
have that
area (A NO(a, b))

area of A ’

If a <0 orif b <0 (or both), then area (A NUO(a,b)) =0, so F(a,b) =0,

If (a,b) € A, then area (A NO(a, b)) = a(b — 3a), so F(a,b) = a(2b— a),
If0<b<1, and a > b, then area (ANDO(a,b)) = %bz, so F(a,b) = b,
If0<a<1,andb> 1, then area (A NO(a,b)) = a — +a°, so F(a,b) = 2a — a,
If both a > 1 and b > 1, then area (A NO(a,b)) = 1, so F(a,b) = 1.

F(a,b) =

9.15b Since f(z,y) = %F(my}, we find for (z,y) € A that f(z,y) = 2. Fur-
thermore, f(z,y) = 0 for (z,y) outside the triangle A.

9.15c¢ For x between 0 and 1,

s = [ swnay= [2a=20-2)

x

For y between 0 and 1,

fy<y):/_°° f(x,y>dy:/0”zdx:2y.



29.1 Full solutions 483

9.16 Following the solution of Exercise 9.14 one finds that U and V are independent
U(0, 1) distributed random variables. Using the results from Section 8.4 we find that
Fy(z) =1 — (1 — x)? for « between 0 and 1, and that Fy (y) = 4 for y between 0
and 1. Differentiating yields the desired result.

9.17 For 0 < s <t < a, it follows from the fact that U; and Uz are independent
uniformly distributed random variables over [0, a], that
P(Uy < t,Us < t) =t*/d?,

and that

P(s <Uy <t,s <Us <t)=(t—s)°/a’.
But then the answer is an immediate consequence of the hint.
The statement can also be obtained as follows. Note that

P(V<s,Z<t)=PUz<s,s<U1 <t)+P(U1 <s,5<Us<t)
4+P(LH <s,Uz < S)

Using independence and that fact that U; has distribution function Fy, (u) = u/a,
we find for 0 < s <t <a:

s(t—s) n s(t—s)

s P —(t—s)?
a2 a2 a2 :

P(V<s,Z<t)= +- >

9.18 a By definition

N 1 11 N+1
E[Xi]:g:lkpxi(k):N(1+2+"'+N):N'§N(N+1):T
9.18 b Using the identity, we find
N 1 & (N +1)(2N +1)
21 — 2 ;= = — 2:—
E[X7] =Y KP(Xi=k)= >k : .
k=1 k=1
But then we have that
N? -1
X)) =E[X?] - (E[Xxi])’ = .
Var(X) = B[X7] - (E[x])” = Y

9.19 a Clearly we must have that a = v/50 = 5/2, but then it follows that 2ab = 80,
implying that b = 44/2. Since 32 + ¢ = 50, we find that ¢ = 18.

9.19b Note that

/°° o—(BVE—aVER g /oo e 3("5) g4y

—o0 —o0

=

< 1 _
= U\/27r/ —

—oo OV 2T
= oV 2m,

since

;efé(ru) for —oo <y < oo

oV2m
is the probability density function of an N(u,c?) distributed random variable (and
therefore integrates to 1).
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9.19c

Ix(z)

e T

_ 7/ 67(5\/51174\/51)267181-2 dy
™ — 00

VI L ()’
w 10 é 2

[ s@uay= [ Rt
30

)

for —oo < x < 0. So we see that X has a N(0, 55) distribution.

9.20 a Since the needle hits the sheet of paper at an random position, the midpoint
(X,Y) falls completely randomly between some lines. Consequently, the distance
Z between (X,Y) and the line “under” (X,Y) has a U(0,1) distribution. Also the
orientation of the needle is completely random, so the angle between the needle and
the positive z-axis can be anything between 0 and 180 degrees. But then H has a

U(0, ) distribution.

9.20b From Figure 29.1 we see that—in case Z < 1/2—the needle hits the line
under it when Z < %sin H. In case Z > 1/2, we have a similar picture, but then
the needle hits the line above it when 1 — Z < %sin H.

(X,Y
\&Z

‘ ﬁsinH

Fig. 29.1. Solution of Exercise 9.20, case Z < 1/2

9.20 ¢ Since Z and H are independent, uniformly distributed random variables, the
probability we are looking for is equal to the area of the two regions in [0, 7) x [0, 1]
for which either

7 < %sinH or 1-7< %sinH,

divided (!) by the total area 7. Note that these two regions both have the same are,
and that this area is equal to

1

/lsianH: -2=1.
0 2 2
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So the probability we are after is equal to

10.1 a The joint probability distribution of X and Y is given by

a

b 1 2 3 P(Y =b)
1 0.217 0.153 0.057 0.427
2 0.106 0.244 0.223 0.573

P(X =a) 0.323 0.397 0.280 1

This means that

E[X] = 1-0.323+2-0.397 + 3-0.280 = 1.957
E[Y] = 1-0.427 +2-0.573 = 1.573
E[XY]=1-1-0217+---+2-3-0.223 = 3.220.

485

It follows that Cov(X,Y) =E[XY] - E[X]E[Y] = 3.220 — 1.957 - 0.245 = 0.142.

10.1 b From the joint probability distribution of X and Y we compute

E[X?] =1:0.323+4-0.397 +9-0.280 = 4.431
Var(X) = E[X?] - (E[X])? = 0.601

E[V?] =1-0.427+4-0.573 = 2.719
Var(Y) = E[Y?] — (E[Y])? = 0.245.

Using the result from a we find

Cov(X,Y) 0.142
V/Var(X) Var(Y)  +/0.601 -0.245

p(X,Y) = = 0.369.

10.2 a From Exercise 9.2:

T

Yy 0 1 2 Py (¥)

-1 1/6 1/6 1/6  1/2
1 0 1/2 0 1/2

px(z) 1/6 2/3 1/6 1

so that E[XY] 1.-1-(—1)+%.

(- +3-1-1=0.

2
10.2b E[Y] =1-(=1)+ 1 -1 =0, so that Cov(X,Y) = E[XY] - E[X]-E[Y] =

0-0=0.

10.2 ¢ From the marginal distributions we find
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B[X] = 0 é+1-§+2 é:1

E[X’] =0 é+1-§+4 %:1
Var(X) = E[X?] —(E[X])Q_g—f:%
E[Y2]:(—1)2~%+12-%:1

Var(Y) =E[Y?] - (E[Y])’=1-0"=

Since Cov(X,Y) = 0 we have Var(X +Y) = Var(X) + Var(Y) = + + 1 = 3.

10.2d Since Cov(X,—-Y) = —Cov(X,Y) = 0 we have Var(X —Y) = Var(X) +
Var(=Y) = Var(X) + (—1)*Var(Y) =+ + 1 = 3.

10.3 Wehave E[U] = 1,E[V] =, E[U?] = 3,E[V?] = 1, Var(U) = 3, Var(V) =
1, and E[UV] = 1. Hence Cov(U,V) =0 and p(U,V) = 0.

10.4 Both X and Y have marginal probabilities (i, i, %, i), so that

1 1 1 1
E[X]=1--+2 ~+3-~+4.-=2.
[X] 4+ 4 3 4+ 4 >
1 1 1 1
EY]=1--+2-- =44 - =2.
V] 4+ 4 3 4+ 4 g
EXY]=1-1 0 1 . y4.4. L1 —625
- 136 136
Hence Cov(X,Y) = E[XY] — E[X]E[Y] = 6.25 — 2.5 - 2.5 = 0.
10.5a First ind P(X =1,Y =0) = ;-5 -1 = % andsimilarly P(X =0,Y =2) =

4 and P(Y =2) = 1. Then P(X
P(X =2,Y =2)= 2:

1) = 2 and P(X =2) = 2, and finally

a

b 0 1 2
0 8/72 6/72 10/72 1/3
1 12/72 9/72 15/72  1/2
2 4/72 3/72 5/72 1/6
1/3  1/4 5/12 1
10.5b With a we find:
1 1 5 13
E[X]70-§+1~Z+2-ﬁfﬁ
1 1 1 5
E[Y]=0-241-242.-2 ==
¥]=0 3Tl et 5756
9 5 65
EXY]=1-1- -+ +2-2- - = —.
XY ot 72 T2
Hence Cov(X,Y) =E[XY]-E[X]E[Y] =2 - .5 =0,

10.5 ¢ Yes, for all combinations (a, b) it holds that P(X = a,Y =b) =P(X =a)P(Y =
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10.6 a When ¢ = 0, the joint distribution becomes

b -1 0 1 P(Y =b)
~1 2/45 9/45 4/45 1/3
7/45 5/45 3/45 1/3
1 6/45 1/45 8/45 1/3
P(X=a) 1/3 1/3 1/3 1

We find E[X] = (—1)-%+0-%+1-% =0, and similarly E[Y] = 0. By leaving out
terms where either X =0 or Y =0, we find
2 4 6 8

45 " 45
which implies that Cov(X,Y) = E[XY] — E[X]E[Y] = 0.

E[XY]=(=1)-(-1) (=11

10.6 b Note that the variables X and Y in part b are equal to the ones from part a,
shifted by c. If we write U and V for the variables from a, then X = U + ¢ and
Y =V + c. According to the rule on the covariance under change of units, we then
immediately find Cov(X,Y) = Cov(U + ¢,V + ¢) = Cov(U,V) = 0.

Alternatively, one could also compute the covariance from Cov(X,Y) = E[XY] —
E[X]E[Y]. We find E[X] = (¢c—1)- 3 +c¢- 3 +(c+1)- 5 = ¢, and similarly E[Y] = c.
Since

E[XY}:(c—1)~(c—1)-3—|—(c—1)~c-g—!—(c—&-l)~(c—|—1)-i

45 45 45
7 5 3
+c~(c—1)~£+c~c~£+c-(c+l)~£
6 1 8 -
+(c+1)-(c—1) E—i—(c—&-l) c E—i—(c—&-l) (c+1) 5=

we find Cov(X,Y) =E[XY] - E[X|E[Y]=c* —c-c=0.

10.6 ¢ No, X and Y are not independent. For instance, P(X =¢,Y = c+ 1) = 1/45,
which differs from P(X =¢) P(Y =c+1) =1/9.

10.7a B[XY] =1 E[X] =E[Y] = 1, so that Cov(X,Y) = E[XY] - E[X]E[Y] =
A
10.7b Since X has a Ber (%) distribution, Var(X) = 1. Similarly, Var(Y) = 1, so

that Cov(X,Y) 18 1
ov(X, -
p(X7Y) = = = ——.
v/ Var(X) Var(Y) 1/4 2
10.7 ¢ For any ¢ between —1 and 1, Cov(X,Y) =E[XY]—(3)*=(3—¢)—(3)* =
—¢, so that

p(X,Y) = Cov(X,Y) = g4
Var(X) Var(Y) 1/4
Hence, p(X,Y) is equal to —1, 0, or 1, for € equal to 1/4, 0, or —1/4.
10.8a E[X?] = Var(X) + (E[X])* = 8.

10.8b E[-2X?+Y] = —2E[X?*] +E[Y] = -2-8+3 = —13.
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10.9 a If the aggregated blood sample tests negative, we do not have to perform
additional tests, so that X; takes on the value 1. If the aggregated blood sample
tests positive, we have to perform 40 additional tests for the blood sample of each
person in the group, so that X; takes on the value 41. We first find that P(X; = 1) =
P(no infections in group of 40) = (1 — 0.001)*° = 0.96, and therefore P(X; = 41) =
1—P(X; =1) = 0.04.

10.9 b First compute E [X;] = 1-0.96+41-0.04 = 2.6. The expected total number of
tests is E[X1 +Xo+ -+ X25] = E[X1]+E[X2]+ . -+E[X25] = 25-2.6 = 65. With
the original procedure of blood testing, the total number of tests is 25-40 = 1000. On
average the alternative procedure would only require 65 tests. Only with very small
probability one would end up with doing more than 1000 tests, so the alternative
procedure is better.

10.10 a We find

= ’ 2 [9 7
E[X]:/ a:fx(w)dx:/o 225(91; + Tz )d :ﬁ[1m4+§m

—o0

3]3 109

o 50’

o 2 13 2 157
4 3
E[Y] =/ yfv(y)dy=/ 25(Sy +12y%) dy = % [Zy +4y] = T06°
—00 1 1

so that E[X + Y] =E[X]|+E[Y] = 15/4.
10.10 b We find

= ° 2 79 5 7 ,° 1287
E[X2]:/ foX(x)dx:/o 225(% +172%) do = 225[ 2’ + @ ] = 250

oo 0

o 2 13 2 318
E[Y?] =/ v’ fr(y )dy—/ 55 3y +12y%) dy = - [5y5+3 4] = T’
1

//xyfmydydx—//75 22%y° +:cy)dydx
_ 3 2 2
—75 Ox <‘/Iydy>dx+75/x </1ydy)dx

4T 215 (% ,. 171
_753/ d+754 yCd“r‘”_sa’

E[XY]

so that E[(X +Y)?] = E[X?] + E[Y?] 4+ 2E[XY] = 3633/250.
10.10 ¢ We find

Var(X) = E[X?] — (E[X])? = 1287 <@> 989

250 50 )~ 2500
318 157\ 791
V) =EN - EN) =5~ (1) =
Var(Y) = E[Y7] - (B[Y])" = 75 <100> 10000’
- ) 3633 15\% 939
Var(X +Y) = B[(X + V)] - (BX +Y])* = T2 (4) = 20007

Hence, Var(X) 4 Var(Y) = 0.4747, which differs from Var(X +Y) = 0.4695.

10.11 Cov(T,5) = Cov(2X +32,2X +32) = (£)°Cov(X,Y) = 9.72and p(T, S) =
p(2X +32,2X +32) =p(X,Y)=0.8.
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10.12 Since H has a U(25, 35) distribution, it follows immediately that E[H] = 30.
Furthermore

12.5 1 r3 1

E[R*] = r’=dr=|—| 2.5 =102.0833.

5 15
7.5 7.5

Hence 7E [H] E [R®] = 7 - 30 - 102.0833 = 9621.128.

10.13a You can apply Exercise 8.15 directly for the case n = 2 to conclude that
E[X] =% and E[Y] = 2. In order to compute the variances we need the probability
densities of X and Y. Using the rules about the distribution of the minimum and
maximum of independent random variables in Section 8.4, we find

fx(x)=2(1-2z) for0<z<1
fr(y) =2y for0 <y <1.

This means that E[X?] = fol 22%(1 — z)dz = %, so that Var(X) = & — (3)® = .
Similarly, E[Y?] = [} 2°dy = 1, so that Var(Y) = § — (2)2 = &.

10.13b Since U and V are independent, each with variance 1—12, it follows that
Var(X +Y) = Var(U + V) = Var(U) + Var(V) = .

10.13 ¢ To compute Cov(X,Y) we need E[XY]. This can be solved from

é =Var(X +Y) =E[(X +Y)’] — (E[X + Y])?
=E[X?] +2E[XY]+E[Y?] — (E[X]+E[Y])%

[
Substitute E[X] = ; and E[X?] = Var(X) + (E[X])? = & + & = %, and similarly
E[Y] =2 and E[Y?] = Var(Y) + (E[Y])? = &= + 3 = 5. This leads to E[XY] = 1.
10.14 a By using the alternative expression for the covariance and linearity of ex-
pectations, we find

vl |

Cov(X +s,Y +u)
=E[(X+s)(Y +u)] —-E[X +s]E[Y + 14
=E[XY +sY +uX + su] — (E[X] + s)(E[Y] +u)
= (E[XY]+ sE[Y] +uE[X] + su) — (E[X]E[Y] + sE[Y] + uE[X] + su)
=E[XY] - E[X]E[Y]
= Cov(X,Y).
10.14b By using the alternative expression for the covariance and the rule on
expectations under change of units, we find
Cov(rX,tY) = E[(rX)(tY)] - E[rX]E[tY]
=E[rtXY] - (rE[X])CE[Y])
= rtE[XY] - rtE[X]E[Y]
rt (E[XY] - E[X]E[Y)])
= rtCov(X,Y).

10.14 ¢ First applying part a and then part b yields

Cov(rX + s,tY +u) = Cov(rX,tY) = rtCov(X,Y).
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10.15 a Left plot: looks like 500 realizations from a pair (X, YY) whose 2-dimensional
distribution has contourlines that are circles. This means X and Y are uncorrelated.
Middle plot: looks like 500 realizations from a pair (X,Y) whose 2-dimensional
distribution has contourlines that are ellipsoids with the line y = x as main axis. This
means X and Y are positively correlated; Right plot: looks like 500 realizations from
a pair (X,Y) whose 2-dimensional distribution has contourlines that are ellipsoids
with the line y = z as main axis. This means X and Y are negatively correlated.
10.15b In the right picture the points are concentrated more closely than in the
other pictures. Hence |p(X,Y)| will be the largest for the right picture.

10.16 a Cov(X, X 4+Y) = Cov(X, X) + Cov(X,Y) = Var(X) 4+ Cov(X,Y)
10.16 b Anything can happen, depending on the sign of Cov(X,Y’) and its magni-
tude compared to Var(X).

10.16 ¢ If X and Y are uncorrelated, Cov(X,Y) = Var(X) > 0, so apart from the
special case where X is constant, X and X + Y are positively correlated.

10.17 a Since all expectations are zero, it is sufficient to show
E[(X+Y +2)’] =E[X*]+E[Y’] +E[Y?] + 2E[XY] +2E[XZ] + 2E[Y Z].

This follows immediately from the hint with n = 3, and using linearity of expecta-
tions.

10.17b Write X=X- E[X], and similarly Y and Z. Then part a applies to X,
Y, and Z:

Var(X' +Y + Z) = Var()z') + Var(f’) + Var(Z)
+ QCOV(X, Y) + ZCOV(X', Z) + ZCOV(Y, Z) .

According to the rules on pages 104 and 151 about the variance and covariance under
a change of units, it follows that Var (f() = Var(X), Cov (5(7 f/) = Cov(X,Y), and
similarly for all other variances and covariances.

10.17 ¢ Similar to part a first consider the case with all random variables having
expectation zero. As in part a, the hint in a together with linearity of expectations
yields the desired equality. Then argue as in part b by introducing X; = X; —E[X;].
10.17d Use part ¢ and note that there are n terms Var(X;) and n(n — 1) terms
Cov(X;, X;) with @ # j.

10.18 First note that X; + X2 + -+ + X is the sum of all numbers, which is
a nonrandom constant. Therefore, Var(X; + X2 +---4+ Xn) = 0. In Section 9.3
we argued that, although we draw without replacement, each X; has the same
distribution. By the same reasoning, we find that each pair (X;, X;), with ¢ # j,
has the same joint distribution, so that Cov(X;, X;) = Cov(Xy, X2) for all pairs
with 4 # j. Direct application of Exercise 10.17 with o? = (N — 1)(N + 1) and
~v = Cov (X1, X2) gives

(N-1)(N+1)
12
Solving this identity gives Cov (X1, X2) = —(N +1)/12.

O:Var(X1+X2++XN):N +N(N—1)COV(X1,X2).
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10.19 By definition and linearity of expectations:
Cov(X,Y) = B[(X — E[X])(Y — E[Y])
=E[XY - XE[Y]|-E[X]Y +E[X]E[Y]]
=E[XY]-E[XE[Y]|-E[E[X]Y]+E[X]E[Y]
=EXY]-EX]E[Y]-EX]E[Y]+E[X]E[Y]
=E[XY]-E[X]E[Y].
10.20 To compute the correlation, we need:
Cov(U,U?) =E[U’] —E[U]E[U?],
Var(U) =E| (E
Var(U?) = B[UY] - (B[U)”.

Hence we determine

which yields

3 2
ay_o _aea (1 11y 5 1 s
Cov(U,U7) = 5 23‘(4 23)“‘12“’
a’ a\?2 11\ o 1 5
Var®) = 5 - (3) *(?1)“ 129
4 2\ 2
ay_ o fer\ _ (L 1) a_ 4.
Var(U)f5 (3) 7(5 9>a T

Hence

(U U ) B \/ 135 = Z\/ 15 = 0.968.
Note that the answer does not depend on a.

11.1 a In the addition rule, k is between 2 and 12. We must always have 1 < k—¢ < 6
and 1 < ¢ < 6, or equivalently, k —6 </ < k—1and 1 <¢<6. For k=2,...,6,
this means

- N |
pz(k) =P(X+Y =k) = px(k—Opy(() =) ¢ =5
£=1 =1
and for k=17,...,12,
2 11 k
pz(k)=P(X+Y =k) [;(pr (k= 0Opy (L 6;66 6_ .

11.1b In the addition rule, k is between 2 and 2N. We must always have 1 <
k—f¢< Nand1</¢<N,orequivalently, Kk — N </ < k—-1and 1 </¢ < N. For
k=2,...,N, this means

pz(k) =P(X +Y =k) =3 px(k — Opy (0) :21 ~ =21
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and for k=N +1,...,2N,

N
1 o2N—k+1
pz(k) =P(X+Y =k)= > px(k—Opy(f) N N
=k—N =k—N

11.2 a By using the rule on addition of two independent discrete random variables,
we have

P(X+Y =k)= prk Opy (£).

Because px(a) =0 for a < —1, all terms w1th Z > k + 1 vanish, so that

k 1kt . 1¢ - .
B M e D 1 ,

£=0

also using Z?:o (IZ) = 2% in the last equality.

11.2b Similar to part a, by using the rule on addition of two independent discrete
random variables and leaving out terms for which px(a) = 0, we have

k k—£ L kee
_ A e (>\+M e A
P(X+Y =k) —Z E)'e -Ee”— ”Z )\+#

=0

Next, write

)\k—EMZ L £ A k—¢t u 4 L k—¢ . ot
= = — 1 - " — 1—
(A + )k <A+u> <A+u> (AHL) ( /\+u) p(1-p)

with p = p/(A + p). This means that

A+ ) " (& O E L
P(X+Y =k) = %e (A+u)z (Z)pe(l—p)k e:%e i),
’ =0 ’

using that 3°5_; (5)p‘(1 —p)F~* = 1.
11.3
- n m
=3 (k—@) (£>(§)k_£(i)é(§)"_(k om
=0
k

=y (k’jg) (’Z) @ e
£=0

This cannot be simplified and is not equal to a binomial probability of the type

(”Jrkm)rk(l — )" for some 0 < 7 < 1.

11.4a From the fact that X has an N(2,5) distribution, it follows that E[X] =
2 and Var(X) = 5. Similarly, E[Y] = 5 and Var(Y) = 9. Hence by linearity of
expectations,

E[Z]=E[3X —2Y +1]=3E[X]-2E[Y]+1=3-2—-2-5+1=-3.
By the rules for the variance and covariance,
Var(Z) = 9Var(X) + 4Var(Y) — 12Cov(X,Y)=9-54+4-9—-12-0 = 81,
using that Cov(X,Y) = 0, due to independence of X and Y.
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11.4b The random variables 3X and —2Y + 1 are independent and, according to
the rule for the normal distribution under a change of units (page 112), it follows
that they both have a normal distribution. Next, the sum rule for independent
normal random variables then yields that Z = (3X) 4+ (—2Y + 1) also has a normal
distribution. Its parameters are the expectation and variance of Z. From a it follows
that Z has an N(—3,81) distribution.

11.4c From b we know that Z has an N(—3,81) distribution, so that (Z + 3)/9
has a standard normal distribution. Therefore

Z+3 6—|—3)

Si

< ) e,

P(Zgﬁ):P(

where @ is the standard normal distribution function. From Table 77 we find that
®(1) = 1 —0.1587 = 0.8413.

11.5 According to the addition rule, the probability density of Z = X 4+ Y is given
by

s = [ T fx(z— ) fr () dy = / Fx(z— 9 fr () dy,

where we use that fy(y) = 0 for y ¢ [0,1]. When 0 < y < 1, the following holds.
For z < 0, also z — y < 0 so that fx(z —y) =0, and for z > 2, z —y > 1 so that
fx(z—y)=0.For0<z< 1:

r2 = [ rxte-niva= 1y ==

whereas for 1 < z < 2:

1 1
f26) = [ ixte-wiwdy= [ 1dy=2-=
0 z—1
11.6 According to the addition rule

fz(2)

2 “q P
[ ixG-ntr@ay= [ G- pe 0 ey,
0 0

1 _ z 1 _ 1 1 317 3
—e 2/2/ (z—y)ydy = —e */* [723/2—*?/3] =2 ¢2/2,
0 0

16 16 2 3 96

11.7 Each X; has the same distribution as the sum of k independent Ezp(A) dis-
tributed random variables. Since the X; are independent, X; + X2 + --- + X, has
the same distribution as the sum of nk independent Fzp(A) distributed random
variables, which is a Gam(nk, X) distribution.

11.8a Y =rX + s has probability density function

1 —s 1 !
r = (50 = ) e

We see that Y = rX + s has a Cau(s,r) distribution.
11.8b If Y = (X — 8)/a then Y has a Cau(0, 1) distribution.
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11.9a According to the product rule on page 172,
z z 1 =1 31
fad Zdr = il
/; y (x) fx(x)m v /; € )2m4m
3 Lo 3 T3 (1
T2 ), 23T 22 2 L 222 22
_3(Li_1
T2 \22 47
11.9b According to the product rule,

C T

T

_af [* saa, _ af [277277 _ aB 1 f—a
_25"'1/196 dx_zﬁ“ [ﬁ—a R (172 )

o ap 1 1

T B—a \ 2P+ T ogatl )
11.10a In the quotient rule for Z = X/Y for 0 < z < oo fixed, we must have
1<zr<ooand 1<z < oo Hence for 0 < z < 1,

fz(2)

fz(2)

fz(2) = 1:fX(zx)fY(y)xdm:/<: & 2)3 %xdm
:7.//2 7°dxfz—3{ 4]jz—Z13(0(z4))—z.

For z > 1, we find

fz(z) = /1Oo fx(zz) fy (y)xr de = /100 &%wdx

4 [ 4 [—=11" 1
== z % dx 5{“’” ] —
23 )y z 4 1,

23’

11.10b In the quotient rule for Z = X/Y for 0 < z < oo fixed, we must have
1<zrxr<ooand 1<z < oco. Hence for 0 < z < 1,

/1/z fx(zz)fy(y)ade = /1/2 medx
066 Oox—a—ﬁfl de — Oéﬂ |:_I70475:|oo

fz(2)

ya+l 1/2 T ya+l a+p
af 1 ot af g1
a—i—,@’za“( (=2 )) a—l—b’z

For z > 1, we find
” fx(z2) fy (y)z da :/1 Wwdx
af [ Bl gy — af [—If‘k’g] T aB 1

sa+l - sa+l a+ﬁ L - a+,82:0‘+1'

fz(2)

1
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11.11a Put 75 = X; + X2 + X3. Then T5 can be interpreted as the time of the
third success in a series of independent experiments with probability p of success.
Then T3 = k means that the first (k — 1) experiments contained exactly 2 successes,
and the k-th experiment was also a success. Since the number of successes in (k—1)
experiments has a Bin(k — 1, p) distribution, it follows that

k-1 i 1 _
P(T5 = k) = ( ) )p2(1 =) p= (k= Dk —2p° (1 -p)
11.11 b This follows from a smart calculation:

ZPZ(k) =1

(k—1)(k=2)p°(1-p)** =1

>
Il
w

(3
M#
N =

>
Il
w

(k—1)(k—2)p(1 —p)" =1 (now put k—2=m)

I3
M’U‘:
Nk

kS
Il
@

m(m+1)p(l—p)™ ' =1

3
1\3@\:
gk

3
I

o %pQ S’ + m)P(X1 =m) =1
@; (E[XT] +E[X1]) =
p* (B [X?] + B[X1))

11.11 ¢ The first part follows directly from b:

2 2 1 2-p
E[X{]=5-EXi|=5 —>= .
Xi]=G-BX=5-r= 5
For the second part:
2 2 2-p 1\? 1-p
Var(Xl):E[Xl]—(E[Xl]) = o —<5> = poRt

11.12 T(1) = [Fe "dt =1 and

Mz+1) = / te tdt = [—txe_t]zgo +/ xt® et dt.
0 0

Since z > 0, the first term on the right hand side is zero and the second term is
equal to zI'(z).

11.13a
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a )\nznflef)\z

P(ana):/o Wdz

z=a

Anflznflef)\z a An712n7267AZ
= l- 7d
e A e

n—1 a yn—1_n—2_—Az
_ _()\a) 'eﬂ\a—i—/ ATz e' ds
(n—1)! o (n—2)!
)‘a)n71 —Aa

_ o1 < .
(n—l)!e +P(Zp—1 <a)

11.13b Use part a recursively:

P(Z,<a)=—-—F—""—c¢

— (M) ..
P(Znéa):P(Zl<a)*Z(i!) e
=1
n—1 i n—1 )
—1— ef)\u _ ()\(1) ef)\a -1 ()‘a) 67)\&
i! - i!
=1 i=

12.1 e This is certainly open to discussion. Bankruptcies: no (they come in clusters,
don’t they?). Eggs: no (I suppose after one egg it takes the chicken some time to
produce another). Examples 3 and 4 are the best candidates. Example 5 could be
modeled by the Poisson process if the crossing is not a dangerous one; otherwise
authorities might take measures and destroy the homogeneity.

12.2 Let X be the number of customers on a day. Given is that P(X = 0) = 107°.
Since X is Poisson distributed, P(X = 0) = e, So e = 107°, which implies
—X = —51In(10), and hence A = 11.5. Then also E[X] = X = 11.5.

12.3 When N has a Pois(4) distribution, P(N = 4) = 4%¢™*/4! = 0.195.

12.4 When X has a Pois(2) distribution, P(X <1) = P(X =0)+P(X =1) =
e 2 4272 =3e"2 = 0.406.
12.5a Model the errors in the bytes of the hard disk as a Poisson process, with

intensity A per byte. Given is that A - 220 =1, or A\ = 272°, The expected number
of errors in 512 = 22 bytes is A2° = 2711 = 0.00049.

12.5b Let Y be the number of errors on the hard disk. Then Y has a Poisson
distribution with parameter p = 39054015 x 0.00049 = 19069.34. Then P(Y > 1) =
1-P(Y =0) =1—¢719993% — 1,00000- - - . For all practical purposes this happens
with probability 1.
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12.6 The expected numbers of flaws in 1 meter is 100/40 = 2.5, and hence
the number of flaws X has a Pois(2.5) distribution. The answer is P(X =2) =
2(2.5)%e 7% = 0.256.

12.7 a It is reasonable to estimate A with (nr. of cars)/(total time in sec.) = 0.192.
12.7b 19/120 = 0.1583, and if A = 0.192 then P(N(10) = 0) = e~ 19210 = 0.147.

12.7 ¢ P(N(10) = 10) with X from a seems a reasonable approximation of this prob-
ability. Tt equals e™*92 - (0.192 - 10)'°/10! = 2.71 - 1075,

12.8 a We have

E[X(X = k(k—1)e "\ /k! = Ze_’\)\k/(k—2)!
k=0
= Z AN — 2'—)\22e AN /5= A%,
=0

12.8b Since Var(X) = E[X(X —1)] + E[X] — (E[X])?, we have Var(X) = \* +
A=A =)\

12.9 In a Poisson process with intensity 1, the number of points in a interval of
length ¢ has a Poisson distribution with parameter ¢. So the number Y; of points
in [0, u1] is Pois(u1) distributed, and the number Y2 in [p1 + p1 + pe] is Pois(u2)
distributed. But the sum Y; + Y3 of these is equal to the number of points in [0, 11 +
u2] , and so is Pois(p1 + pe2) distributed.

12.10 We have to consider the numbers p, = P(X =k) = e ~#. To compare

them, divide: pr+1/pr = p/(k+ 1), and note that pr < (or > )pk+1 is equivalent to

pr+1/pr > (or <)1.
So it follows immediately that
— for p < 1 the probabilities P(X = k) are decreasing, and

— for p > 1 the probabilities are increasing as long as kil > 1,

and decreasing from the moment where this fraction has become less than 1.
Lastly if u =1, then po =p1 > p2 > ps > ....
12.11 Following the hint, we obtain:
P(N([0, 5] = k, N([0,25]) = n) = P(N([0,s]) = k, N((s,2s]) = n — k)
P(N([0 ]) k) -P(N((s,25]) =n—k)
= (A

As) e /(KY) - (As)"Fe T/ ((n = k)Y)
= (As)"e ***/(k!(n — k)!).

S

So
P(N([0,s]) =k, N(]0,2s]) = n)
P(N([0,2s]) =n)
=nl/(kl(n — k)1 - (As)"/(2Xs)"
=n!/(kl(n—k))-(1/2)".
This holds for £k =0, ...,n, so we find the Bin(n, %) distribution.

12.12a The event {X, < t} is a disjoint union of the events {X1 < s, X2 < ¢} and
{X1>s,X2 <t}

P(N([0,s]) = k| N([0,2s]) = n) =
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12.12b If Xs <t and N, = 2, then the first two points of the Poisson process must
lie in [0, ¢], and no points lie in (¢, a], and conversely. Therefore
P(Xs <t,Na =2) = P(N([0,t]) = 2, N((¢,a]) = 0)

A2¢2 e~ . g Aa—t)

= 2
= 12,
Similarly,
P(X1 > s, X2 < £, N, = 2) = P(N([0,5)) = 0, N([s,]) = 2, N((t,a]) = 0)
— o Xs . Az(gTs)z o= A(t=9)  g=Ala—t)
= IN°(t —s)%e M
The result now follows by using part a.

12.12 ¢ This follows immediately from part b since

< <t N, =
P <5, X St Ne =) = PR S e =)
—Aa

where the denominator equals %)\QaQ e

12.13 a Given that Ny = n + m, the number of daisies X; has a binomial dis-
tribution with parameters n +m and 1/4. So P(X; =n,Y: =m|N; =n+m) =

P(X:=n|Ne=n+m) = (n-;m) (%)n(%)m

12.13 b Using part a we find that

PXi=nYi=m)=P(X;=n,Yo =m|N,=n+m)P(Ny =n+m) =
n+m " T (Ag)tme— At " m n+m —\

(o (5) () s = (5)(3) Gorre.

12.13 ¢ Using b we find that

PXi=n)=>">"_P(X¢=n,Yi=m) =

m=0

LT Ore TS L 3A4) e BN = L (/yt)nem M/,

since the sum over m just adds all the probabilities P(Z = m) where Z has a
Pois(3X\/4) distribution.

12.14 a This follows since 1 —1/n — 1 and 1/n — 0.

12.14 b This is an easy computation: E[X,] = (1 — 1) 04 (1) -7n =7 for all n.

n

13.1 For U(—1,1), p =0 and ¢ = 1/4/3, and we obtain the following table:

k 1 2 3 4
P(JY —p| <ko) 0577 1 1 1

For U(—a,a), p =0 and o = a/+/3, and we obtain the following table:

k 1 234
P(Y —p|<ko) 0577 1 1 1

For N(0,1), » =0 and o = 1, and we obtain the following table:

k 1 2 3 4
P(]Y — pu| < ko) 0.6826 0.9544 0.9974 1
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For N(u,0?), P(|Y — p| < ko) = P(]Y — u|/o < k), and we obtain the same result
as for N(0,1).
For Par(3), p=3/2, 0 = +/3/4, and

/3/2+k\/§/2

P(Y — u| < ko) = 3zt de =1 - (3/24 kV3/2)7%,

1

and we obtain the following table:

k 1 2 3 4

P(]Y — pu| < ko) 0.925 0.970 0.985 0.992

For Geo(3), p=2,0 =2, and P(|Y — p| < ko) = P(|Y — 2| < kv'2) =
P(2 —kV2<Y <2+ k\/§) = P(Y< 2+ kﬂ), and we obtain the following table:

k 1 2 3 4
P(|Y — u| < ko) 0.875 0.9375 0.9844 0.9922

13.2a From the formulas for the U(a,b) distribution, substituting a = —1/2 and
b =1/2, we derive that E[X;] = 0 and Var(X;) = 1/12.

13.2b We write S = X1 + X2 + - - - + X100, for which we find E[S] = E[X1]+---+
E[X100] = 0 and, by independence, Var(S) = Var(X1)+-- -+ Var(X100) = 100- 15 =
100/12. We find from Chebyshev’s inequality:

Var(S) 1

P 10) = P(|S — 10) < = —.
(1] > 10) = P(5 = 0] > 10) < =02 = =

13.3 We can apply the law of large numbers to the sequence (Y;), with Y; = |X;|
fori=1,.... Since E[Y;] = E[|X;]] = 2f00'5xdx =2-1.(0.5)% = 0.25, and since
the Y; have finite variance, it follows that £ 37" | |X;| — 0.25 as n — oo.

13.4a Because X; has a Ber(p) distribution, E[X;] = p and Var(X;) = p(1 — p),
and so E[X,] = p and Var(X,) = Var(X;) /n = p(1 — p)/n. By Chebyshev’s
inequality:
(1—-p)/n _ 25p(1 —p)

(0.2)2 n

The right-hand side should be at most 0.1 (note that we switched to the comple-
ment). If p = 1/2 we therefore require 25/(4n) < 0.1, or n > 25/(4 - 0.1) = 62.5,
i.e., n > 63. Now, suppose p # 1/2, using n = 63 and p(1 — p) < 1/4 we conclude
that 25p(1 — p)/n < 25-(1/4)/63 = 0.0992 < 0.1, so (because of the inequality) the
computed value satisfies for other values of p as well.

P(|X, —p| >02) <?

13.4b For arbitrary a > 0 we conclude from Chebyshev’s inequality:

cp=p)/n _pd-p) _ 1

P(|X, —p|l>a) < a2 na? — 4na?’

where we used p (
what n is 1/(4na®
enough.

1 —p) < 1/4 again. The question now becomes: when a = 0.1, for
) <0.1? We find: n > 1/(4-0.1-(0.1)%) = 250, so n = 250 is large
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13.4c From part a we know that an error of size 0.2 or occur with a probability
of at most 25/4n, regardless of the values of p. So, we need 25/(4n) < 0.05, i.e.,
n > 25/(4-0.05) = 125.

13.4d We compute P(X'n < 0.5) for the case that p = 0.6. Then E [Xn] = 0.6
and Var(X'n) = 0.6-0.4/n. Chebyshev’s inequality cannot be used directly, we need
an intermediate step: the probability that X, < 0.5 is contained in the event “the
prediction is off by at least 0.1, in either direction.” So

. , 0.6-0.4/n 24

For n > 240 this probability is 0.1 or smaller.

13.5 To get P(|M, —c| <0.5) > 0.9, we must have P(|U,| <0.5) > 0.9. Now

P(\Un\ > 0.5) < % = S’/—;; = 171—2 If we want this below 0.1, we should take
n > 120.

13.6 The probability distribution for an individual game has P( -1)= %, and

P(X =1) = £2. From this we compute E[X] = (—1)- 28 +1- 12 = L If the game is
played 365-1000 times, and we suppose that the roulette machine is “fair”, the total
gain will, according to the law of large numbers, be close to 365 - 1000 - % = 9865
(Euro). (Using Chebyshev’s inequality one can, for example, find a lower bound for

the probability that the total gain will be between 9865 — 250 and 9865 + 250.)
13.7 Following the hint we define ¥; = 1 when X; € (—o0,a], and 0 otherwise.
In this way we have written F,(a) = %Z?:l Y;. The expectation of Y; equals
E[Y;] = P(X; € (~00,a]) = F(a). Moreover, Var(¥;) = F(a)(1 — F(a)) is finite.
Since F,(a) = Yy, the law of large numbers tells us that

lim P(|F.(a) — F(a)| >¢) =0.
13.8a We have p = E[Y] = f;j: ze~"dx ~ 2h - 2e”2. (Of course the integral
can be computed exactly, but this approximation is excellent: for h = 0.25 we get
p = 0.13534, while the exact result is p = 0.13533.) Now Var(Y) = p(1 — p) =
4he™%(1 — 4he™?), and

Var (Y, /2h) = %4he72(1 — 4he™?).

h2n
13.8 b What is required is that
P(|Y,/2h — f(a)| > 0.2f(a)) <0.2.

Chebyshev’s inequality yields that

. Var(f’n/Qh)
P([%2/2h = f(a)] 2 02(@) < <G

so we want Var(Y,/2h) < 0.008 - (2¢7%)?. Using part a this leads to

—2 2
S0.008~e — n>e—1

1 — o2 2 0008 = 7986 = n=799.
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13.9a The statement looks like the law of large numbers, and indeed, if we look
more closely, we see that T is the average of an i.i.d. sequence: define V; = X2,
then T, = Y,. The law of large numbers now states: if Y,, is the average of n
independent random variables with expectation p and variance 0?2, then for any
e>0: limnp_oo P(|Yn —pl > 6) = 0. So, if a = p and the variance o2 is finite, then
it is true.

13.9b We compute expectatlon and variance of Y;: E[Y;] = [XQ] = f ) *x 2dz =
1/3. And: E[Y?] =E[X}] = [, 22" dz = 1/5, so Var(Y;) = 1/5 — (1/3)* = 4/45.
The variance is finite, so indeed, the law of large numbers applies, and the statement
is true if a = E[X7] =1/3.

13.10a For 0 <e <1:

P(|Mp,-1|>e)=Pl-e<M,<1l+4+e)=P(l-ec<M,)=(1—¢)".

13.10 b For any 0 < e: lim,—oo(1 — €)™ = 0. The conclusion is that M, converges
to 1, as m goes to infinity. This cannot be obtained by a straightforward application
of Chebyshev’s inequality or the law of large numbers.

13.11a We have P(|X — 1| > 8) = P(X = 10) = 1/10. On the other hand we get
from Chebyshev’s inequality P(|X — 1| > 8) < (t —1)/64 = 9/64.

13.11b For a =5 we have

EXACT: P(|JX — 1| > 5) = P(X =10) = 1/10, CHEB: P(|X — 1] > 5) < 9/25,

so the Chebyshev gap equals 9/25-1/10=0.26. For a = 10 we have

EXACT: P(|X — 1] > 10) = 0, CHEB: P(|X — 1] > 10) < 9/100,

so the Chebyshev gap equals 9/100=0.09.

13.11 ¢ Choosing a = t as in the previous question, we have P(|X — 1| > ¢) = 0,

and P(|X — 1| >t) < (t —1)/t* < 1/t. So to answer the question we can simply
choose t = 100,¢ = 1000 and ¢ = 10 000.

13.11d As we have seen that the Chebyshev gap can be made arbitrarily small
(taking arbitrarily large ¢ in part ¢) we can not find a closer bound for this family
of probability distributions.

13.12a Since E [Xn] = % > ti, and Var(Xn) = 712 >, Var(X;), this inequal-
ity follows directly from Chebyshev’s.

13.12b This follows directly from
Var ZVar ) < M—>0 as n — oo.

14.1 Since g = 2 and o = 2, we find that
P(X14+ X2+ -+ Xqaa > 144) P( 144 > 1)
< X144 /f1441—u>

ag
2
P (Z144 > 127)
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14.2 Since E[X;] = 1/4 and Var(X;) = 3/80, using the central limit theorem we
find

P(X1 + X2+ -+ + Xe2s < 170) :P<\/%X625_1/4 <\/@170/6ﬂ5_1/4>

\/3/80 \/3/80

~ $(2.8402) = 1 — 0.0023 = 0.9977.

14.3 First note that P(|X,, —p| < 0.2) = 1-P(X, —p > 0.2)—P(X, —p < -0.2).
Because p = p and o = p(1 — p), we find, using the central limit theorem:

P(X,—p>02) = P Va—r—l > /22
vp(1—p) p(1—p)
om0 Vap(zsva 2 ),
p(1—p) p)
where Z has an N(0,1) distribution. Similarly,
- 0.2
P(X,—p<—02)~P|Z>Vn——mive |,
p(1—p)

so we are looking for the smallest positive integer n such that

1-2P ZZ\/EL > 0.9,
p(1—p)
i.e., the smallest positive integer n such that

0.2
P(Z > \/ﬁm> < 0.05.

From Table 77 it follows that

0.2 > 1.645.

Vn————>
V(1 —p)
Since p(1 — p) < 1/4 for all p between 0 and 1, we see that n should be at least 17.
14.4 Using the central limit theorem, with = 2, and o2 = 4,

P(Ty + Tz + - + Ts0 < 60) = P(\/3OT302_ 2 < \/30¥>

1

~ o = —.

=1

14.5 In Section 4.3 we have seen that X has the same probability distribution

as X1+ X2 + -+ + X, where X1, Xo,..., X, are independent Ber(p) distributed

random variables. Recall that E[X;] = p, and Var(X;) = p(1 —p). But then we have
for any real number a that

p(- Xm0 ) op( Xt et T X ) g, <a);
np(l —p) np(l —p)
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see also (14.1). It follows from the central limit theorem that

P(X—np < a) ~ ®(a),

np(l —p)
i.e., the random variable —X="2_ has a distribution that is approximately standard
v/ np(1—p) pP Y

normal.

14.6 a Using the result of Exercise 14.5 yields that

P(XSQS)_P<X25 2525)

/7574 = /7574

where Z has a standard normal distribution. In the same way,

P(X<26)—P<X25 2625)

VT5/4 = \J75/4

_p(X=2_ 2
V75/4 = 53

~ P(Z < 0.2309)

= 0.591.

14.6b P(X <2)~ P(Z < —5.31) = 0 (the table ends with z = 3.49).

nl/4 o

Xn, one easily shows that E[Y] = "lgip, and Var(Y) =

14.7 Setting ¥ =
1/4/n. Since

o

"

it follows from Chebyshev’s inequality that
>a

(=)< b

As a consequence, if n goes to infinity, we see that most of the probability mass

X, —p

1
n4

za> —P(Y —E[Y]| > a),

1
n4

Xo—p
g

of the random variable ni % is concentrated in the interval between —a and a,
for every a > 0. Since we can choose a arbitrarily small, this explains the spike in
Figure 14.1.

14.8a 1= Var(X;) =E[X}] — (E[X,])> =E[X/] — 0,50 E[X7] = 1.
14.8 b (integration by parts: E [Xf] = fx4\/%ef%x2dx ==L ([ﬂc?’e*%xg] — f3x267%x2dm) =

ez
waeféﬁdx =3E[X]] =3)
Var(X?) =E[X]] - (BE[X{])?’=3-1=2.
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14.8¢ P(Yigo > 110) & P(Z > %) ~ 0.242.

14.9 a The probability that for a chain of at least 50 meters more than 1002 links
are needed is the same as the probability that a chain of 1002 chains is shorter than
50 meters. Assuming that the random variables X1, X, ..., X1002 are independent,
and using the central limit theorem, we have that

5000

P(X1 + X2 + -+ + X100z < 5000) = P(Z < /1002 - %) =0.0571,

where Z has an N(0,1) distribution. So about 6% of the customers will receive a
free chain.

14.9b We now have that
P(X1+4+ X2+ -+ X002 < 5000) = P(Z < 0.0032),

which is slightly larger than 1/2. So about half of the customers will receive a free
chain. Clearly something has to be done: a seemingly minor change of expected value
has major consequences!

14.10 a Note that

Vn

V3 ~M,—c 3
5 V", <?“ﬁ)

~ (‘Tﬁﬁ<z<§\/ﬁ)
:172P<22§\/ﬁ),

where Z is N(0,1). Now choose n such that 1 — 2P (Z > g\/ﬁ) =0.9, ie., let n

P(|M, —¢| <0.5) = P(

be such that P(Z > g\/ﬁ) = 0.05. Then ?ﬁ = 2.75 yielding that n = 90.75.
Since n is an integer, we find n = 91.

14.10b In case the U; are normally distributed, the random variable (M, — ¢)/o
has an N(0,1) distribution, and the calculations in the answer of a are ‘exact’ (cf.
Section 5.5). In all other cases this random variable has a distribution which is by
approximation equal to an N(0, 1) distribution (see also the discussion in Section 14.2
on the size of n).

15.1a For bin (32.5, 33.5], the height equals the number of z; in B; divided by
n|B;|: 3/(5732 - 1) = 0.00052. Similar computations for the other bins give

bin height bin height
(32.5, 33.5] 0.00052 40.5, 41.5] 0.16312
(33.5, 34.5] 0.00331 41.5, 42.5] 0.11270
(34.5, 35.5] 0.01413 42.5, 43.5] 0.05461
(35.5, 36.5] 0.03297 43.5, 44.5] 0.02931
(36.5, 37.5] 0.07135 44.5, 45.5] 0.00872
(
(
(

37.5, 38.5] 0.13137 45.5, 46.5] 0.00314
38.5, 39.5] 0.18526 46.5, 47.5]  0.00052
39.5, 40.5] 0.18876 47.5, 48.5] 0.00017

NN N N N N S
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15.1 b Symmetric, since the histogram has one mode with more or less the same
decay in both directions.

0.20

0.15 —

0.10 —

0.05 —

f I I I I I I I I 1

32 34 36 38 40 42 44 46 48 50
15.2 a For bin (50, 55], the height equals the number of z; in B; divided by n|B;|:
1/(23 - 5) = 0.0087. The heights of the other bins can be computed similarly.

bin  height

(50,55] 0.0087
(55,60] 0.0174
(60,65 0.0087
(65,70] 0.0870
(70,75] 0.0348
(75,80] 0.0348
(80,85] 0.0087

15.2b No, 31 degrees is extremely low compared to the temperature experienced
on earlier takeoffs.

15.3a For bin (0, 250], the height equals the number of x; in B; divided by n|B;|:
141/(190 - 250) = 0.00297. The heights of the other bins can be computed similarly.

Bin Height

(0,250]  0.00297
(250,500]  0.00067
(500,750]  0.00015
(750,1000]  0.00008
(1000,1250]  0.00002
(1250,1500] 0.00004
(1500,1750]  0.00004
(1750,2000] 0

(2250,2500] 0

(2250,2500]  0.00002
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15.3 b Skewed, since the histogram has one mode and only decays to the right.

0.003 - —
0.002 —

0.001 —

AL

f I I I I 1
0 500 1000 1500 2000 2500

15.4a For bin (0, 500], the height equals the number of z; in B; divided by n|B;|:
86/(135-500) = 0.0012741. The heights of the other bins can be computed similarly.

Bin Height

(0,500]  0.0012741
(500,1000]  0.0003556
(1000,1500] 0.0001778
(1500,2000] 0.0000741
(2000,2500] 0.0000148
(2500,3000] 0.0000148
(3000,3500]  0.0000296
(3500,4000] 0
( ]
( ]
( ]
( ]
( ]

4000,4500] 0.0000148
4500,5000] 0O

5000,5500] 0.0000148
5500,6000] 0.0000148
6000,6500] 0.0000148

15.4b Since all elements (not rounded) are strictly positive, the value of F, at
zero is zero. At 500 the value of Fj, is the number of x; < 500 divided by n:
86/135 = 0.6370. The values at the other endpoints can be computed similarly:

t F,(t) t F,(t)

00 3500 0.9704
500 0.6370 4000 0.9704
1000 0.8148 4500 0.9778
1500 0.9037 5000 0.9778
2000 0.9407 5500 0.9852
2500 0.9481 6000 0.9926
3000 0.9556 6500 1

15.4 ¢ The area under the histogram on bin (1000, 1500] is 500 -0.000178 = 0.0889,
and F,(1500) — F3,(1000) = 0.9037 — 0.8148 = 0.0889.
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15.5 Since the increase of F;, on bin (0, 1] is equal to the area under the histogram
on the same bin, the height on this bin must be 0.2250/(1 — 0) = 0.2250. Similarly,
the height on bin (1, 3] is (0.445-0.225)/(3-1)=0.1100, and so on:

Bin  Height
(0,1] 0.2250
(1,3] 0.1100
(3,5] 0.0850
(5,8] 0.0400
(8,11] 0.0230

(11,14] 0.0350
(14,18] 0.0225

15.6 Because (2 —0)-0.245+ (4 — 2) - 0.130 + (7 — 4) - 0.050 + (11 — 7) - 0.020 +
(15 —11) - 0.005 = 1, there are no data points outside the listed bins. Hence

number of z; <7

FE,(7) = -
number of z; in bins (0, 2], (2,4] and (4, 7]
n
n-(2—-0)-0.245+n-(4—2)-0.130 +n - (7 — 4) - 0.050

n

= 0.490 + 0.260 + 0.150 = 0.9.

15.7 Note that the increase of F, on each bin is equal to the area under the
histogram on the same bin. Since all bins have the same width, it follows from the
results of Exercise 15.2 that the increase of F;, is the largest (5-0.0.870 = 0.435) on
(65, 70].

15.8 K does not satisfy (K1), since it is negative between 0 and 1 and does not
integrate to one.

15.9 a The scatterplot indicates that larger durations correspond to longer waiting
times.

15.9b By judgement by the eye, the authors predicted a waiting time of about 80.

15.9 ¢ If you project the points on the vertical axes you get the dataset of waiting
times. Since the two groups of points in the scatterplot are separated in North East
direction (both vertical as well as horizontal), you will see two modes.

15.10 Each steep part of F), corresponds to a mode of the dataset. One counts four
of such parts.

15.11 The height of the histogram on a bin (a, b] is

number of x; in (a,b] _ (number of z; < b) — (number of z; < a)
nb—a) N n(b—a)
Fp(b) — Fr(a)
b—a '
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15.12 a By inserting the expression for f, ,(t), we get

o0 o0 1 =~ t— X;
[Wt-fn,h(t)dt /wrm;K( - ) dt
L [t (t—a
*EZ/_JK< . )dt.
i=1
For each i fixed we find with change of integration variables u = (¢t — x;)/h,

/_O; ltzK( h ) dt:/_i(xi+hu)K(u) du

:mi/ K(u)du+h/ uK (u) du = x;,

using that K integrates to one and that [*_ uK (u) du = 0, because K is symmetric.

Hence .
/::t frn(t) Z/ ( )dt—i;wi.

15.12 b By means of a similar reasoning

/jOtQ-fn,h(t)dt:/w - Zi ( )dt

1 oo 42 t—
:f§ K dt.
nizlf_ooh < h >

For each 1:

oo 42 t—x;
K
[R5«

= / (zi + hu)’ K (u) du = / (27 4 2z:hu + h*u®)K (u) du

— 00 —o0

= :cf/ K (u) du+ Qxih/ uK (u) du + h2/ K (u) du
=27 +h? / u) du,

again using that K integrates to one and that K is symmetric.

16.1 a The dataset has 135 elements, so the sample median is the 68th element in
order of magnitude. From the table in Exercise 15.4 we see that this is 290.

16.1 b The dataset has n = 135 elements. The lower quartile is the 25th empirical
percentile. We have k = [0.25 - (135 4+ 1)] = 34, so that o = 0, and ¢,(0.25) =
x(34) = 81, according to the table in Exercise 15.4. Similarly, the upper quartile is
qn(0.75) = x(102) = 843, and the IQR is 843 — 81 = 762.

16.1 ¢ We have k = [0.37 - (1354 1)| = [50.32] = 50, so that o = 0.32, and

4n(0.37) = T(50) + 0.32 - (x(31) — T(s0)) = 143 + 0.32 - (148 — 143) = 144.6.
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16.2 To compute the lower quartile, we use that n = 272, so that k = |0.25-273| =
|68.25] = 68 and « = 0.25, and hence from Table 15.2:

4n(0.25) = T(68) + 0.25 - (x(60) — T(6s)) = 129 4 0.25 - (130 — 129) = 129.25.

Similarly, ¢»(0.5) = 240 and ¢, (0.75) = 267.75. Hence, |¢n(0.75) — ¢»(0.5)| = 27.75
and |gn(0.25) — ¢ (0.5)| = 110.75. The kernel density estimate (see Figure 15.3) has
a ‘peak’ just right of 240, so there is relatively a lot of probability mass just right
of the sample median, namely about 25% between 240 and 110.75.

16.3 a Because n = 24, the sample median is the average of the 12th and 13th
element. Since these are both equal to 70, the sample median is also 70. The lower
quartile is the pth empirical quantile for p = 1/4. We get k = |p(n+ 1)] = |0.25 -
(24+1)] = |6.25] = 6, so that

qn(0.25) = x5y + 0.25 - (x(7) — x(6)) = 66 + 0.25 - (67 — 66) = 66.25.
Similarly, the upper quartile is the pth empirical quantile for p = 3/4:
qn(0.75) = x(15) + 0.75 - (x(19) — 2(18)) = 75 + 0.75 - (75 — 75) = 75.

16.3 b In part a we found the sample median and the two quartiles. From this we
compute the IQR: ¢,(0.75) — ¢, (0.25) = 75 — 66.25 = 8.75. This means that

G (0.25) — 1.5 - IQR = 66.25 — 1.5 - 8.75 = 53.125,

gn(0.75) + 1.5 - IQR = 75+ 1.5 - 8.75 = 88.125.
Hence, the last element below 88.125 is 88, and the first element above 53.125 is 57.

Therefore, the upper whisker runs until 88 and the lower whisker until 57, with two
elements 53 and 31 below. This leads to the following boxplot:

81 | S
75 1
e

66.25 ‘

(e}
31 — o

16.3 ¢ The values 53 and 31 are outliers. Value 31 is far away from the bulk of the
data and appears to be an eztreme outlier.

16.4 a Check that g, = 700/99 and Z,, = 492/11, so that

5 5 (492 700
2(Fp—32) =2 2 —32) = .

5@ )=3% ( 11 ) 99
16.4b Since n = 11, for both datasets the sample median is 6th element in order of
magnitude. Check that Med(yi,...,yn) = 50/9 and Med(z1,...,xn) = 42, so that
S(Med(m, e an) —32) = g (42— 32) = %,

which is equal to Med(y1,...,Yn)-
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16.4 ¢ For any real number a, we have

n

yn:i;yi:;Z(am—i—b):a(i;m) +b=aZ, +b.

i=1

For a > 0, the order of magnitude of y; = ax; + b is the same as that of the z;’s,
and therefore
Med(y1,...,yn) = aMed(z1, ...,2n) + b.

When a < 0, the order of y; = ax; + b is reverse to that of the x;’s, but the position
of the middle number in order of magnitude (or average of the two middle numbers)
remains the same, so that the above rule still holds.

16.5a Check that the sample variance of the y;’s is (s¢)? = 132550/99%, so that

92(3 2 = 5)%482 132550
9) V7 7 \9) 11 997
which is equal to (s¢)?, and hence s¢ = 2sF.

16.5b For the z;’s we have Med(z1,...,zn) = 42. This leads to the following table

T; 43 43 41 41 41 42 43 58 58 41 41
|z — 42| 11 1 1 1 0 1 16 16 1 1
|xs —42|ordered | O 1 1 1 1 1 1 1 1 16 16

so that MADy = Med|z; — 42| = 1. Similarly, we have Med(y1,...,yn) = 52, and

_ 55 55 50 55 130 130
Yi s 9 9 95 5 F % 9 5 9 9
g — 2 5 5 5 5 5 g 5 8 8 5 5
Yi— 9 9 9 9 9 9 9 9 9 9

50 5 5 5 5 5 5 5 5 80 80
lyi — glordered [ 0§ 5 5 § 5 3§ 3 9 9 9

so that MAD¢ = Med|y; — %| = g. Therefore, MAD¢c = gMADF.

16.5 ¢ Since, §n = aZn + b, for any real number a we have for the sample variance
of the y;’s

2 1 ¢ o 1 ¢ _ 2
= i — Yn) = i b) — n b
= T L) = 2y Yl ) (a2 +b)
=a’ Ly (i — Tn)? = a’s%

n—1

so that sy = |a| sx. Because Medy = aMedx + b, it follows that

MADy = Med|y; — Medy | = Med|(ax; + b) — (aMedx + b)|
= |a|Med|zl — Medx| = |a|MADx.
16.6a Yes, wefindz=(1+5+4+9)/3=15/3=5,5=(24+4+6+8)/4=20/4=75,

so that (Z + 3)/2 = 5. The average for the combined dataset is also equal to 5:
(15 + 20)/7 = 5.
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16.6 b The mean of z1,z2,...,ZTn,Y1,Y2,-..,Ym equals

Ti+- -+ Tty +- - FYm  NTn+MYm N o+
n+m n+m n+m" " n—i—mym'

In general, this is not equal to (Z,+7m )/2. For instance, replace 1 in the first dataset
by 4. Then Z, = 6 and §m = 5, so that (Zn + Im)/2 = 5%. However, the average of
the combined dataset is 38/7 = 52.

16.6 ¢ Yes, m = n implies n/(n +m) = m/(n + m) = 1/2. From the expressions
found in part b we see that the sample mean of the combined dataset equals (Z,, +
Ym)/2.

16.7a We have Med, = 5 and Med, = (4 + 6)/2 = 5, whereas for the combined
dataset

1 245 6 89

the sample median is the fourth number in order of magnitude: 5.

16.7 b This will not be true in general: take 1,2,3 and 5,7 with sample medians 2
and 6. The combined dataset has sample median 3, whereas (2 + 6)/2 = 4.

16.7 ¢ This will not be true in general: take 1,9 and 2,4 with sample medians 5
and 3. The combined dataset has sample median 3, whereas (5 + 3)/2 = 4.

16.8 The ordered combined dataset is 1, 2, 4, 5, 6, 8, 9, so that the sample median
equals 5. The absolute deviations from 5 are: 4, 3, 1, 0, 1, 3, 4, and if we put them in
order: 0, 1, 1, 3, 3, 4, 4. The MAD is the sample median of the absolute deviations,
which is 3.

16.9 a One can easily check that Z, = 10/3. The average of the y;’s:

Ll 1y _ 154 3
3 6 15) 3 60 10’

so that g7 = 1/Z7.

16.9b No, for instance take 1, 2, and 3. Then Z, = 2, and §n = (1+ 3 + 3)/3 =
11/18.

16.9 ¢ First note that the transformation y = 1/z puts the y;’s in reverse order
compared to the z;’s. If n is odd, then the middle element in order of magnitude
remains the middle element under the transformation y = 1/z. Therefore, if n is
odd, the answer is yes. If n is even, the answer is no, for example take 1 and 2. Then
Medx = % and Medy = Med(l,% =1+ %)/2 = %.

16.10 a The sum of the elements is 16.8 4+ y which goes to infinity as y — oo, and
therefore the sample mean also goes to infinity, because we only divide the sum by
the sample size n. When y — oo, the ordered data will be

3.0 42 46 5.0 y

Therefore, no matter how large y gets, the sample median, which is the middle
number, remains 4.6.

16.10b In order to let the middle number go to infinity, we must replace at least
three numbers. For instance, replace 3.2, 4.2, and 5.0 by some real number y that
goes to infinity. In that case, the ordered data will be

30 46 y y vy
of which the middle number y goes to infinity.
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16.10 ¢ Without loss of generality suppose that the dataset is already ordered. By
the same reasoning as in part a, one can argue that we only have to replace one
element in order to let the sample mean go to infinity.

When n = 2k + 1 is odd, the middle number is the (k + 1)st number. By the same
reasoning as in part b one can argue that in order to let that go to infinity, we must
replace the middle number, as well as k other elements by y, which means we have
to replace k+ 1= (n—1)/2 = [(n+ 1)/2] elements.

When n = 2k is even, the middle number is the average of the kth and (k + 1)st
number. In order to let that go to infinity, it suffices to replace k elements, that
include either the kth or the (k + 1)st number, by y, This means we have to replace
k=n/2=|(n+1)/2] elements.

16.11 a. From Exercise 16.10 we already know that the sample mean goes to
infinity. This implies that (4.6 — Z,)? also goes to infinity and therefore also the
sample variance, as well as the sample standard deviation.

From Exercise 16.10 we know that the sample median remains 4.6. Hence, the or-
dered absolute deviations are

0 04 04 1.6 |y—4.6]

Therefore, no matter how large y gets, the MAD, which is the middle number of the
ordered absolute deviations, remains 0.4.
b. In order to let the middle number the ordered absolute deviations go to infinity,
we must at least replace three numbers. For instance, replace 3.2 and 4.2 by y and
5.0 by —y, where y is some real number that goes to infinity. In that case, the ordered
data will be

-y 3.0 46 y y

of which the middle number is 4.6. The ordered absolute deviations are
0 04 |y—4.6] |y—4.6] |4.6+y]

The MAD is the middle number, which goes to infinity.

c. Without loss of generality suppose that the dataset is already ordered. By the
same reasoning as in part a we only need to replace one element in order to let the
sample standard deviation go to infinity.

When n = 2k + 1 is odd, the middle number is the (k + 1)st number. By the same
reasoning as in part b one can argue that in order to let the MAD go to infinity, we
must replace the middle number by y, as well as k other numbers. This means we
have to replace k+1 = (n —1)/2 = [(n + 1)/2] elements, for instance one by —y
and the rest by y. In that case, the sample median remains finite and the majority
of the absolute deviations from the median tends to infinity.

When n = 2k is even, the middle number is the average of the kth and (k + 1)st
number. In order to let the MAD go to infinity, it suffices to replace k elements, that
include either the kth or the (k + 1)st number, by y. This means we have to replace
k=n/2 = [(n+1)/2] elements, for instance one by —y and the rest by y. In that
case, the sample median remains finite and half of the absolute deviations from the
median tends to infinity.

16.12 The sample mean is

1 1 NN+1) N+1
A2+t N) =+ W+l N+
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When N = 2k + 1 is odd, the sample median is the (k + 1)st number, which is
E+1=(N-1)/2+1=(N+1)/2. When N = 2k is even, the sample median is
the average of the kth and (k + 1)st number:

(N/2+ (N/2+1)) _ N+1
2 2

16.13 First note that the sample mean is zero, and n = 2N + 1. Therefore the
sample variance is

si:n_l((_N)2+...+(_1)2+02+12+...N2)
_ 1 2 2y 1 NN+DHERN+1)  (N+1)@N+1)
oy 2 (N = 6 B 6 ’

so that s, = \/%(N—i— 1)(2N 4+ 1). Since n = 2N + 1 is always odd, the sample
median is the middle number, which is zero. Therefore we have the following

@ N -+ -1 0 1 -+ N
|ivz\ N .- 1 0 1 --- N
|z;| ordered o 1 1 .- .-+ N N

Since n = 2N + 1, which is odd, MAD = Med|z;| is the (N + 1)st number in the
bottom row: (N +1)/2.

16.14 When n = 2i + 1 is odd, then in the formula qn(%) = T(k) + AT(rt1) — T()]
for the 50th empirical percentile, we find k = [1(n+1)] = [i4+1] =i+ 1 and a = 0,
so that ¢n(%) = @(;41), which is the middle number in order of magnitude.

When n = 2i is even, we find k = [$(n+1)] = [i+ 1| =i and a = 1, so that

T, +x;
an(3) = 26y + 5 (T — 2@) = 2

I

which is the average of the two middle numbers in order of magnitude.

16.15 First write

1« _ 1 <« _ _ 1 — I 1o _
- (mz—wn)Q:gZ(xf—anxl—l—xi):E;m?—%vngle—i—ggxi

i=1 i=1

Next, by inserting

n n
1 _ 1 _2 1 _2 -2
,E r; = Tn, and ,E T, =— n-T =T,
n 4 n 4 n
=1 i=1
we find
n n n
1 2 1 2 2, 2 1 2 2
=Y (i —ZTn)" == ) 2] —2T,+Tp=— ) xi— T,
n 4 n 4 n 4
i=1 =1 1=1

16.16 According to Exercise 15.12

/oo thon(t) dt = T

— 00

and
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/_o:otfnh() +h/

Therefore by the rule for the variance, Var( ) = E[X?] — (E[X])?, the variance
corresponding to fyp is

/_o; 2 fon(t) dt — (/_O; t o (t) dt>2

/Oo £ frn(t) dt — (Z,)?
,sz - —|—h2/ u’ K (u) du
:72 Ti — Tn) 24+ h? / u) du,

according to Exercise 16.15.
16.17 For p=1i/(n+ 1) we find that

k=|pln+1)]=¢ and a=phn+1)—k=0,

so that

0n(p) = Ty + & (T(et1) — T(w) = T(i)-
17.1 Before one starts looking at the figures, it is useful to recall a couple features
of the two distributions involved:

1. most of the probability mass of the N(0,1) distribution lies between +3, and
between £9 for the N(0,9) distribution.

2. the height at zero of the exponential density is A and the median of the Ezp(\)
is In(2)/\ (see Exercise 5.11).

We then have the following:

1. N(3,1), since the mode is about 3.

N(0,1), since Fy, is 0.5 at about zero and all elements are between about 2.
N(0,1), since the mode is about zero and all elements are between about —4
and 3.

N(3,1), since the mode is about 3.

Ezp(1/3), since the sample median is about 2.

Ezp(1), since the sample median is less than 1.

N(0,1), since the mode is about zero and all elements are between about +4.
N(0,9), since the mode is about zero, and all elements are between about —6
and 9.

9. Ezp(1), since the height of the histogram at zero is about 0.7. Moreover, almost
all elements are less than 6, whereas the probability of exceeding 6 for the
Ezp(1/3) distribution is 0.135.

10. N(3,1), since F), is 0.5 at about 3.

11. N(0,9), since the mode is about zero and all elements are between about +12.

12. Ezp(1/3), since the height of the histogram at zero is about 0.24. Moreover,
there are several elements beyond 10, which has probability 0.000045 for the
Ezp (1) distribution.

13. N(0,9), since the mode is about zero and all elements are between about —5
and 8.

W

XN o
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14. Ezp(1/3), since the height of the kernel density estimate at zero is about 0.35.
15. Ezp(1), since the sample median is about 1.

17.2 We continue as in Exercise 17.1:

1. Exp(1/3), since the sample median is about 2.
2. N(0,9), since the sample median is about zero and all elements are between
about —6 and 8.
3. Ezp(1/3), since the sample median is about 2.
4. N(0,1), since the sample median is about zero and all elements are between
about —2 and 3.
5. N(3,1), since the sample median is about 3.
6. Ezp(1), since the sample median is less than one.
7. N(0,9), since the sample median is about zero and all elements are between
about —9 and 7.
8. N(0,9), since the sample median is about zero and all elements are between
about —7 and 9.
9. N(3,1), since the sample median is about 3.
10. Ezp(1), since the sample median is less than one.
11. N(3,1), since the sample median is about 3.
12. Ezp(1), since the sample median is less than one.
13. N(0,1), since the sample median is about zero and all elements are between
about +3.
14. N(0,1), since the sample median is about zero and all elements are between
about —3 and 4.
15. Exp(1/3), since the sample median is about 2.

17.3 a The model distribution corresponds to the number of women in a queue. A
queue has 10 positions. The occurrence of a woman in any position is independent
of the occurrence of a woman in other positions. At each position a woman occurs
with probability p. Counting the occurrence of a woman as a “success,” the number
of women in a queue corresponds to the number of successes in 10 independent
experiments with probability p of success and is therefore modeled by a Bin(10,p)
distribution.

17.3b We have 100 queues and the number of women z; in the ith queue is a
realization of a Bin(10,p) random variable. Hence, according to Table 17.2, the
average number of women T1go resembles the expectation 10p of the Bin(10,p)
distribution. We find Z100 = 435/100 = 4.35, so an estimate for p is 4.35/10 = 0.435.

17.4 a Recall that the parameter u is the expectation of the Pois(u) distribution.
Hence, according to Table 17.2 the sample mean seems a reasonable estimate. Since,
the dataset contains 229 zero’s, 211 ones, etc.,

_ 211-14+93-24+35-34+7-441-7 537
n= = — =0.9323.
v 576 576~ 3%
17.4b From part a the parameter x4 = 0.9323. Then P(X = 0) = ¢ %9323 = 0.393,
and the other Poisson probabilities can be computed similarly. The following table

compares the relative frequencies to the Poisson probabilities.

hits 0 1 2 3 4 5 6 7

rel.freq. 0.397 0.367 0.162 0.06 0.012 0.0000 0.0000 0.0017
prob. 0.393 0.367 0.171 0.053 0.012 0.0023 0.0004 0.0000
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17.5a One possibility is to use the fact that the geometric distribution has expec-
tation 1/p, so that the sample mean will be close to 1/p. From the average number
of cycles needed, 331/93, we then estimate p by 93/331 = 0.2809.

Another possibility is to use that fact that p is equal to the probability of getting
pregnant in the first cycle. We can estimate this by the relative frequency of women
that got pregnant in the first cycle: 29/93 = 0.3118.

17.5b From the average number of cycles needed, 1285/474, we could estimate p
by 474/1285 = 0.3689. Another possibility is to estimate p by the relative frequency
of women that got pregnant in the first cycle: 198/474 = 0.4177.

17.5c¢c

p  p+p(l—p) +p(l-p)?

smokers 0.2809 0.6281
0.3118 0.6741
nonsmokers 0.3689 0.7486
0.4177 0.8026

17.6 a The parameters p and o are the expectation and standard deviation of the
N(u,0?) distribution. Hence, according to Table 17.2 we can estimate p by the
sample mean:

n

1 2283772
IR

== = = 30.84
Mo T e ’

and o by the sample standard deviation s,. To compute this, use Exercise 16.15 to
get

1 « no|1 <
2 o 2 _ - & 2
ST T Zi:1(‘rz Tn)” = n—1 [n Z(xl Tn) :|

i=1

2
n 1« _ 5732 [9124064
- [(n Z”Cf) - (W] = St | s 99| =4

i=1

Hence, take s, = v/4.35 = 2.09 as an estimate for o.
17.6 b Since we model the chest circumference by means of a random variable X

with a N(u, 02) distribution, the required probability is equal to
P(38.5 < X < 42.5) = P(X < 42.5) — P(X < 38.5)

:P(Z< 42.5—u> 7P(Z< 38.5—u>
ag g

e (42.5*#) e (38.57u>
ag g

where Z = (X — u)/o has a standard normal distribution. We can estimate this by
plugging in the estimates 39.84 and 2.09 for p and o. This gives

& (1.27) — ® (—0.64) = 0.8980 — 0.2611 = 0.6369.

Another possibility is to estimate P(38.5 < X < 42.5) by the relative frequency of
chest circumferences between 38.5 and 42.5. Using the information in Exercise 15.1
we find 3725/5732 = 0.6499.
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17.7 a If we model the series of disasters by a Poisson process, then as a property of
the Poisson process, the interdisaster times should follow an exponential distribution
(see Section 12.3). This is indeed confirmed by the histogram and empirical distri-
bution of the observed interdisaster times; they resemble the probability density and
distribution function of an exponential distribution.

17.7b The average length of a time interval is 40 549/190 = 213.4 days. Following
Table 17.2 this should resemble the expectation of the Exp(A) distribution, which
is 1/A. Hence, as an estimate for A we could take 190/40 549 = 0.00469.

17.8 a The distribution function of Y is given by

Fy(a) =P(Y < a) :P(X < yl/a) =1-\v.

This is the distribution function of the Ezp(\%) distribution, which has expectation
1/A%. Therefore, E[X¢] = E[Y] = 1/A“.

17.8 b Take a-powers of the data: y; = x§. Then, according to part a, the y;’s
are a realization of a sample from an Fzp(A®) distribution, with expectation 1/A%.
Hence, 1/A“ can be estimated by the average of these numbers:

1 1 o

Next, solve for A to get an estimate for A:

1 n -1/

When we plug in @ = 2.102 and apply this formula to the dataset, we get A\ =
(10654.85)~1/2:102 — ,0121.

17.9a A (perfect) cylindrical cone with diameter d (at the base) and height h has
volume md?h/12, or about 0.26d*h. The effective wood of a tree is the trunk without
the branches. Since the trunk is similar to a cylindrical cone, one can expect a linear
relation between the effective wood and d?h.

17.9b We find
5, = 2 Yi/mi 9369 ah00
n 31
5/% = (> wyi)/n  26.486/31 — 0.3028

(X xi)/n ~ 87.456/31

iYi A4
least squares = szng = 39154'69484 = 0.3035.

17.10a
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17.10b If f is symmetric around its median, then

flm —y) = f(m+y)
for all y. This implies that the area under f on (—oo, m—y] is equal to the area under
fon [m+y,00),ie F(m—y) =1-F(m+y). By a this means G(y) = 2F(m+y)—1.
To derive G™ (%) put 2+ = G(y). Then, since m = F™(3)

1 3

sSy= FinV(%) —m = FinV(%) _ FinV(%).

17.10 ¢ First determine an expression for F™(x), by putting = = F(u). Then
F™(z) = p+ o®™ (z).
With b it follows that the MAD of a N(u,0?) is equal to
FinV(g) _ FinV(%) _ a_(binV(%) _ Ucbinv(%) _ 0'@““’(%)7
using that ®™(3) = 0. A
For the N(5,4) distribution the MAD is 2(I>mv(%) =2-0.6745 = 1.3490.
17.11 a Using Exercise 17.10 a it follows that
Gly) = F(m+y) = F(m—y)
— (1 _ e*A(m*y)) _ (1 _ e*>\(m+y))

_ ef)nn (e)\y _ ef)\y)

1 _
=5 (=),
using that m is the median of the Exzp()\) distribution, and satisfies 1 — e ™™ = %
17.11 b Combining a with Exercise 17.10 b the MAD of the Fzp()) distribution is
a solution of G(y) = 3, so that % (e)‘y — efky) = +. Multiplying this equation with
e, yields that the MAD must satisfy e**Y — e —1 = 0.

17.11¢ Put z = e¥ and solve 22> — ¢ — 1 = 0 for z. This gives

_1+£45
=—
Since the MAD must be positive, it can be found from the relation
M — 1+V5
5

If follows that the MAD of the Ezp(\) distribution is equal to

In(1++v5) -2 _In(1++5) P (L)
A a A 27
18.1 If we view a bootstrap dataset as a vector (z7,...,xz;,), we have five possibil-

ities 1, 2, 3, 4, and 6 for each of the six positions. Therefore there are 5° different
vectors possible. They are not equally likely. For instance, (1,1,1,1,1,1) has prob-
ability (3)°, whereas (2,2,2,2,2,2) has probability (3)° to occur.
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18.2 a Because the bootstrap sample can only be 1 if and only if all elements in the
bootstrap random sample are 1, we get:

P(X,=1)=P(X; =1,...,X; =1)

4
—P(X{=1)---P(X] = 1) = (i) — 0.0039.

18.2 b Because the maximum is less than 4, is equivalent to all numbers being less
than 4, we get

Pmax X; =6) =1 —P(max X; <4)=1-P(X] <4,...,X; <4)
4
—1-P(X; <4)---P(X]<d4)=1— (Z) = 0.6836

18.3 a Note that generating from the empirical distribution function is the same as
choosing one of the elements of the original dataset with equal probability. Hence,
an element in the bootstrap dataset equals 0.35 with probability 0.1. The number
of ways to have exactly three out of ten elements equal to 0.35 is (130), and each has
probability (0.1)3(0.9)7. Therefore, the probability that the bootstrap dataset has

exactly three elements equal to 0.35 is equal to ('))(0.1)*(0.9)" = 0.0574.

18.3 b Having at most two elements less than or equal to 0.38 means that 0, 1,
or 2 elements are less than or equal to 0.38. Five elements of the original dataset
are smaller than or equal to 0.38, so that an element in the bootstrap dataset is
less than or equal to 0.38 with probability 0.5. Hence, the probability that the
bootstrap dataset has at most two elements less than or equal to 0.38 is equal to
(0.5)" + () (0.5)" + (1) (0.5)"" = 0.0547.

18.3 ¢ Five elements of the dataset are smaller than or equal to 0.38 and two
are greater than 0.42. Therefore, obtaining a bootstrap dataset with two elements
less than or equal to 0.38, and the other elements greater than 0.42 has probabil-
ity (0.5)*(0.2)°. The number of such bootstrap datasets is ('y). So the answer is

2
(%)) (0.5)* (0.2)° = 0.000029.

18.4a There are 9 elements strictly less than 0.46, so that P(M7j, < 0.46)
(35)"° = 0.3487.

10
18.4b There are n — 1 elements strictly less than m,, so that P(M; < m,) =
(5" =01 —1/n)"

18.5 Since each X is either 0, 3, or 6, it is not so difficult to see that X{ + X35 + X3
can only take the values 0, 3, 6, 9, 12, 15, and 18. The sample mean of the
dataset is T, = 3. Therefore X3 — Z, = (X{ + X5 + X3)/3 — 3 can only take

the values —3, —2, —1, 0, 1, 2, and 3. The value X} — Z, = —3 corresponds to
(X1, X3,X3) = (0,0,0). Because there are 3% = 27 possibilities for (X1, X3, X3),
the probability P(X; —Z, = —3) = 1/27. Similarly, the value X3j — z, = —2

corresponds to (X1, X5,X3) being equal to (3,0,0), (0,3,0), or (0,0,3), so that
P(X§ —Zp = —2) = 3/27. The other probabilities can be computed in the same
way, which leads to

a 3 -2 -1 0 1 2 3
3 6 7 6 3 1
27 27 27 27 27 27 27

P(Xfl — Ty = a)
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18.6 a We have

_ 2

Am=lel-e=o dm=ml)=-h?)emn 3

) )
18.6 b Since we know that the dataset is a realization of a sample from an Ezp(\)
distribution, we are dealing with a parametric bootstrap. Therefore we must generate
the bootstrap datasets from the distribution function of the Exp () distribution with
the parameter A\ estimated by 1/Z, = 0.2. Because the bootstrap simulation is for
Med (X1, X2, ..., X,)—mx, in each iteration we must compute Med(z7, x5, ..., x),)—
m”, where m”™ denotes the median of the estimated exponential distribution: m* =
In(2)/(1/Z,) = 5In(2). This leads to the following parametric bootstrap simulation
procedure:

1. Generate a bootstrap dataset x1,z5, ...,z from F‘(x) =1—e 02,

2. Compute the centered sample median for the bootstrap dataset:
Med(z71,z3,...,2,) — 51n(2),
where Med(z71, 75, ...,x;,) is the sample median of =7, x5, ..., x;,.

Repeat steps 1 and 2 many times.

18.7 For the parametric bootstrap, we must estimate the parameter 6 by 6 =
(n + 1)m, /n, and generate bootstrap samples from the U(0,6) distribution. This
distribution has expectation p,; = 0/2 = (n+1)m,/(2n). Hence, for each bootstrap
sample x7,x3,...,; compute T, — uy = &y, — (n + 1)m,/(2n).

Note that this is different from the empirical bootstrap simulation, where one would
estimate p by Z, and compute Zj, — Zp,.

18.8 a Since we know nothing about the distribution of the interfailure times, we
estimate F' by the empirical distribution function F,, of the software data and we
estimate the expectation pu of F' by the expectation pu* = Z, = 656.8815 of Fj,.
The bootstrapped centered sample mean is the random variable X —656.8815. The
corresponding empirical bootstrap simulation is described as follows:

1. Generate a bootstrap dataset 7, x5, ...,z from F,, i.e., draw with replacement
135 numbers from the software data.
2. Compute the centered sample mean for the bootstrap dataset:

z,, — 656.8815

where Z;, is the sample mean of =7, z5,..., 2.

Repeat steps 1 and 2 one thousand times.

18.8 b Because the interfailure times are now assumed to have an Ezp()\) distribu-
tion, we must estimate A by A = 1/%, = 0.0015 and estimate F' by the distribution
function of the FEzp(0.0015) distribution. Estimate the expectation p = 1/X of the
Ezxp(X) distribution by p* = 1/5\ = Zp, = 656.8815. Also now, the bootstrapped
centered sample mean is the random variable X,; — 656.8815. The corresponding
parametric bootstrap simulation is described as follows:

1. Generate a bootstrap dataset x7, x5, ..., from the Ezp(0.0015) distribution.
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2. Compute the centered sample mean for the bootstrap dataset:
Z,, — 656.8815,

where Z;, is the sample mean of =7, z5,..., 2.

Repeat steps 1 and 2 one thousand times. We see that in this simulation the boot-

strapped centered sample mean is the same in both cases: X, — Z,, but the corre-
sponding simulation procedures differ in step 1.

18.8 ¢ Estimate A by A = In2/m,, = 0.0024 and estimate F by the distribution
function of the Ezp(0.0024) distribution. Estimate the expectation p = 1/X of the

Ezxp(X) distribution by p* = 1/5\ = 418.3816. The corresponding parametric boot-
strap simulation is described as follows:

1. Generate a bootstrap dataset x7,x5,...,z;, from the Ezp(0.0024) distribution.
2. Compute the centered sample mean for the bootstrap dataset:

Z;, — 418.3816,

where T, is the sample mean of x7,z5,..., ).

Repeat steps 1 and 2 one thousand times. We see that in this parametric bootstrap
simulation the bootstrapped centered sample mean is diﬁ”ergnt from the one in the
empirical bootstrap simulation: X, — (In2)/m,, instead of X;; — Z,.

18.9 Estimate p by Z,, = 39.85, 0 by s,, = 2.09, and estimate F' by the distribution
function of the N(39.85,4.37) distribution.

1. Generate a bootstrap dataset x7, 3, ...,z from the N(39.85,4.37) distribution.
2. Compute the centered sample mean for the bootstrap dataset:

Zy, — 39.85
where Z, is the sample mean of =7, z53,..., 5.

Repeat steps 1 and 2 one thousand times. Estimate P(|X, — u| > 1) by the relative
frequency of bootstrapped centered sample means that are greater than 1 in absolute

value:
number of Z;, with |Z;, — 39.85| greater than 1

1000
18.10 a Perform the empirical bootstrap simulation as in part a of Exercise 18.8.

1. Generate a bootstrap dataset x7, x5, ..., x), from F,, i.e., draw with replacement
135 numbers from the software data.
2. Compute the centered sample mean for the bootstrap dataset:

z, — 656.8815

where Z;, is the sample mean of =7, z5,..., 5.

Repeat steps 1 and 2 one thousand times.
Estimate P(\Xn —pl > 10) by the relative frequency of bootstrapped centered sam-
ple means that are greater than 1 in absolute value:

number of Z, with |Z;, — 656.8815| greater than 10
1000 '
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18.10 b Perform the parametric bootstrap simulation as in part b of Exercise 18.8

1. Generate a bootstrap dataset x7, x5, ...,z from the Ezp(0.0015) distribution.
2. Compute the centered sample mean for the bootstrap dataset:

Z,, — 656.8815,
where Z;, is the sample mean of =7, z5,..., 5.
Repeat steps 1 and 2 one thousand times.

Estimate P (| X, — p| > 10) as in part a.

18.11 Estimate p by Z,, = 39.85, o by s, = 2.09, and estimate F' by the distribution
function of the N(39.85,4.37) distribution.

1. Generate a bootstrap dataset 1,5, ...,z from the N(39.85,4.37) distribution.

2. Compute the sample mean Z;,, sample standard deviation s}, and empirical dis-
tribution function F;; of x7,z5,...,z;. Use these to compute the bootstrapped
KS distance

tks = sup |Fy (a) — Fay, o7, (a)]|
a€R

Repeat steps 1 and 2 a large number of times. To investigate to which degree the
value 0.0987 agrees with the assumed normality of the dataset, one may compute
the percentage of ¢, values that are greater then 0.0987. The closer this percentage
is to one, the better the normal distribution fits the data.

18.12a Note that P(T5, <0) = P(M, >0) = 0, because all X; are less than 0
with probability one. To compute P(7;; < 0), note that, since the bootstrap random
sample is from the original dataset, we always have that M, < m,. Hence

P(Ty <0)=P(M;, >mp) =P(M);, =mn)=1—-—P(M,, <my).

Furthermore, from Exercise 18.4 we know that P(M;; < m,) = (1—1)".
18.12b Note that

Gn(0) =P(T, <0) =P(M, <0)=P(X; <0)---P(X, <0),

which is zero because the X; have a U(0, 0) distribution. With part a it follows that

Sup G5 (1) — Gu()] > [G(0) — Ga(0)] = P(T] < 0) = 1 - (1 - 1)

teER n

18.12 ¢ From the inequality e™* > 1 — z, it follows that

1— (1—1> >1- (e‘l/“)":1—e‘1.
n

18.13 a The density of a U(0, #) distribution is given by fg(z) =1/6, for 0 < z < 6.

Hence for 0 < a < 0,
“1 a
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18.13 b We have
P(T, <t)=P(1—M,/0 <t)=P(M, >0(1—1t)=1—P(M, <6(1—1t).

Using the rule on page 115 about the distribution function of the maximum, it
follows that for 0 <t <1,

Go(t)=1-P(M, <0(1—1t)=1—-Fp(0(1—¢t)"=1—(1-¢t)".
18.13 ¢ By the same argument as before

Gi(t) =P(Tr <t)=1 —P(M; < é(1—t)) .

Since M, is the maximum of a random sample X7, X5, ..., X, from a U(0, é) distri-
bution, again the rule on page 115 about the distribution function of the maximum
yields that for 0 <¢ <1,

Gi(t)=1— P(M; <4(1— t)) =1-F@1-t)'=1—-(1-t"

19.1a We must show that E[T] = 6. From the formulas for the expectation and
variance of uniform random variables we deduce that E[X;] = 0 and Var(X;) =
(20)*/12 = 6° /3. Hence E [X7] = Var(X;)+(E[X;])* = 6*/3. Therefore, by linearity
of expectations

B[T] = J(B[X1] + E[XZ] + -+ E[X2])

2 2 2
= (0*_4_...4_0*):%,”.67:92.

Slw 3w

3 3

Since E[T] = #?, the random variable T is an unbiased estimator for 62.
19.1b The function g(z) = —/7 is a strictly convex function, because g’ (z) =
(x73/%)/4 > 0. Therefore, by Jensen’s inequality, —/E[T] < —E [\/ﬂ Since, from
part a we know that E[T] = 62, this means that E [\/T] < 6. In other words, VT
is a biased estimator for 6, with negative bias.
19.2 a We must check whether E[S] = u. By linearity of expectations, we have
1 1 1 1 1 1
ES|=E|zX1+ X2+ -X3| =-E[X -E[X —-E[X
8] =B |30 + 3o + X6 = $BI] + §EIX] + §ELX]
RS R U S UAE BAE A
Tk T 23T T
So indeed, S is an unbiased estimator for p.
19.2b We must check under what conditions E[T] = p for all u. By linearity of
expectations, we have
E[T] = E[CLle —|— U,QXQ + e + aan} = alE[Xl] —|— U,QE[XQ} + e —|— anE[Xn}
=aip+ap+-Fanp = (a1 +az+--+an)p.

This is equal to p if and only if a1 + a2 + - - - + an = 1. Therefore, T is an unbiased
estimator for p if and only if a1 +a2 4+ - -+ a, = 1.
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19.3 We must check under what conditions E[T] = p for all p. By linearity of
expectations, we have

ET]=Ela(X1+Xo+ -+ Xn)+ b =a(E[X1] + E[Xo] + - -+ E[X,]) + b
=a(p+p+---+p)+db=anu+b.

For T to be an unbiased estimator for u, one must have anu + b = p for all p, with
a and b being constants not depending on p. This can only be the case, when b =0
and a = 1/n.

19.4 a The function g(z) = 1/x is convex, so that according to Jensen’s inequality:

1 1
ET]|=E|—=—| > —.
] {xn] E[X.]
Furthermore, E [X,,] = E[X1] = 1/p, so that E[T] > 1/(1/p) = p. We conclude that

T is a biased estimator for p with positive bias.

19.4b For each ¢ label ‘X; < 3’ as a success, then the total number Y of all
X; < 3 has a Bin(n,0) distribution where 8 = p + (1 — p)p + (1 — p)?p represents
the probability that a woman becomes pregnant within three or fewer cycles. This
implies that E[Y] = n# and therefore E[S] = E[Y/n] = E[Y] /n = 6. This means
that S is an unbiased estimator for 6.

19.5 We must find out for which ¢, E[T] = p, where p = 1/X is the expectation of
the Ezp(\) distribution. Because M, has an Ezp(n)) distribution with expectation
1/(n\), we have

E[T]|=E[cM,] =cE[M,] =c- e
Hence, with the choice ¢ = n, we get E[T] = 1/\ = p, which means that T is an
unbiased estimator for p.

19.6 a We must show that E[T] = 1/\. By linearity of expectations

n S n 1 1
BT = " (B[X] - BDL) = [((S—i—X) - (“ﬁ)]
_n 1o A]_m (1)1 1
Tn—1X nX\| n-1 n AN
19.6 b Find a linear combination of X,, and M,, of which the expectation is §. From

the gxpressions for E [)?n] and E[M,] we see that we can eliminate A\ by subtracting
E [Xn] from nE[My]. Therefore, first consider nM, — X,,, which has expectation

_ _ 1 1
E|\nM, — X,| =nE[M,] —E|X,| = — ] - — ) = —1)6.
[ ) =]~ E[%) =n (54 5) = (54 5) = (a- 13
This means that _
nM, — X,
T=—-—
n—1

has expectation §: E[T] = E [nM,, — X,] /(n — 1) = 4, so that T is an unbiased
estimator for §.
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19.6 ¢ Plug in Z,, = 8563.5, m,, = 2398 and n = 20 in the estimator of part b:

202398 — 8563.5
- 19

19.7 a Note that by linearity of expectations

= 2073.5.

E(T)] = SE(M] -

Because N1 has a Bin(n, p1) distribution, with p1 = (6+2) /4, it follows that E[N1] =
np1 = n(0 4+ 2)/4, so that E[T1] = 6. The argument for 75 is similar.

19.7b Plug in n = 3839, n1 = 1997, and n2 = 32 in the estimators 77 and T5:

t1 = 1 -1997 — 2 = 0.0808,

3839
4
t -32 =0.0333.
> 7 3839
19.8 From the model assumptions it follows that E[Y;] = Bz; for each i. Using

linearity of expectations, this implies that

E[Bl]:%(w-f'"'-‘r%)=%<&+"'+6wn):5,

x1 Tn x1 Tn
E[B] = E[Yi]+ -+ E[Ya] :/3551+-"+5xn _5
T+ -+ Tn T+ + T
B[By] = :ElE[YllJr---ernE[Yn] _ Bx2 + - + Ba? — 3
T34+ T2 I%_F..._A'_x%

19.9 Write T = e ?/", where Z = X1 + X2+ -+ X, has a Pois(npu) distribution,
with probabilities P(Z = k) = ¢™™*(nu)* /k!. Therefore

B[T) =B 7" = ie L p(Z = k)
k=0
k
B ST Y L)
e “;e “kZ:O

Use that 377 2% /k! = e”, with z = npe” /™, and conclude that
E[T]=e"". e ™ _ gmnu(l—eTH™)

20.1 We have Var(X,) = MSE(X,) = ¢°/n, which is decreasing in n, so the
larger the sample, the more efficient X,, is. In particular Var(X,) /Var(Xgn) =
(6%/n)/(c?/2n) = 2 shows that X, is twice as efficient as X,,.

20.2a Compute the mean squared errors of S and T: MSE(S) = Var(S) +
[bias(S)]? = 4040 = 40; MSE(T) = Var(T) + [bias(T)]* = 4 +9 = 13. We prefer T,
because it has a smaller MSE.

20.2b Compute the mean squared errors of S and 7: MSE(S) = 40, as in a;
MSE(T) = Var(T) + [bias(T)]> = 4 + a®. So, if a < 6: prefer T. If a > 6: prefer S.
The preferences are based on the MSE criterion.
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20.3 Var(Ty) = 1/(n)?), Var(T:) = 1/)?; hence we prefer T}, because of its smaller
variance.

20.4 a Since L has the same distribution as N +1 — M, we find
E[T5] =E[3L—1]=E[3BN+3-3M—1] = 3N+2— E[2T5+ 2] = 3N —2N =N.

Here we use that E[273] = 2N, since T3 is unbiased.
20.4b We have

Var(T3) = Var(3L — 1) = 9Var(L) = 9Var(M) = %(N +1)(N —2).
20.4 ¢ We compute:
Var(T5) /Var(Tz) = 9Var(M) /Var(3M — 1) = 9Var(M) /9 Var(M) = 4.

So using the maximum is 4 times as efficient as using the minimum!

20.5 From the variance of the sum rule: Var((U + V)/2) = 1(Var(U) 4 Var(V) +
2Cov(U,V)). Using that Var(V)=Var(U), we get from this that that the relative
efficiency of U with respect to W is equal to

Var(W) _ Var(U+V)/2) 1 Cov(U, V) 11
V@) v a0 ) 2t )

Since the correlation coefficient is always between -1 and 1, it follows that the relative
efficiency of U with respect to W is always between 0 and 1. Hence it ia always better
(in the MSE sense) to use W.

20.6 a By linearity of expectations, E[U1] = E[T1] + 5 (7 — E[T1] — E[T%] — E[T3]),
which equals oy + %(ﬂ' —o — a2 —a3) = oq.

To compute the variances, rewrite U; as Uy = %Tl — %Tg — %Tg + %ﬂ'. Then, by
independence, Var(Uy) = & Var(T1) + & Var(Tz) + £ Var(Ts) = 30°.

20.6 b We have Var(T1) /Var(U1) = 3/2, so Uy is 50% more efficient than T;.

20.6 ¢ There are at least two ways to obtain an efficient estimator for a; = a2. The
first is via the insight that 71 and T both estimate a, so (71 +72)/2 is an efficient
estimator for a1 (c.f. Exercise 20.1). Then we can improve the efficiency in the same
way as in part a. This yields the estimator

%:%(TI +T2)+%(7T—T1—T2—T3):%T1+%T2—§T3+%7F.

The second way is to find the linear estimator Vi = w11 4+ vT> + w1 + t with the
smallest MSE, optimising over u,v,w and ¢. This will result in the same estimator
as obtained with the first way.

20.7 We compare the MSE’s, which by unbiasedness are equal to the variances.
Both N; and N3 are binomally distributed, so Var(N1) = npi1(1—p1) = n(0+2)(1—
(04 2)/4)/4, and Var(N2) = np2(1 — p2) = n(1 — 0)/4. It follows that

Var(T1) = %Var(Nl) _1

16 1
—(4- 6%); Var(Tz) = 5 Var(Nz) = —0(4 - 0).

Since (4 — 6%) > 0(4 — 0) for all 0, we prefer T.
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20.8 a This follows directly from linearity of expectations:
E[T]=E[rX,+(1—r)Yn] =rE[Xp]+ (1 —r)E[Yn] =rp+ (1 —r)p=p
20.8 b Using that X, and V., are independent, we find MSE(T)=Var(T) =

r*Var(X,) + (1 —r)*Var (V) =r* - 0°/n+ (1 —r)* - 0% /m.
To find the minimum of this parabola we differentiate with respect to r and

equate the result to 0: 2r/n — 2(1 — r)/m = 0. This gives the minimum value:
2rm—2n(l—r)=0orr =n/(n+m).

20.9 a Since E[T1] = p, Ti is unbiased. The estimator T, takes only the values 0
and 1, the latter with probability p™. So E[T2] = p™, and T% is biased for all n > 1.

20.9b Since 7} is unbiased, MSE(T1) = Var(71) = np(1 —p)/n* = 1p(1 —p). Now
for T»: this random variable has a Ber(p™) distribution, hence

MSE(T:) = E[(T2 — 0)*] =E[(T2 —p)’] =p* - P(T2 =0)+ (1 —p)* - P(Ta =1) =
pP(L=p") + (1 =p)°p" =p" = 2p" " +p*.

20.9 ¢ For n = 2: MSE(T) = 4p MSE(T1), so for p < & T% is more efficient than
T1, but otherwise T; is more efficient.

20.10 a Recall that the variance of an Exp()\) distribution equals 1/A?, hence the
mean squared error of T' equals

MSE(T) = Var(T) + (E[T] - A7")*
202~n~)\72+(c~n~/\71—)\71)2
=% [02-n+(c~n—1)2]
=2 [62-(n2+n) —2en+1].
20.10 b This is a parabola in ¢, taking its smallest value when 2¢(n? 4+ n) = 2n,

which happens for ¢ = 1/(n + 1). So the estimator with the smallest MSE is

=—— (X1 +Xo+ -+ Xn).
n+1(1+ 2t + Xn)

Substituting ¢ = 1/n, and ¢ = 1/(n + 1) in the formula for the MSE, we find that

MSE(X,) = % and MSE(U) = n-li-l'

So U performs better in terms of MSE, but not much.
20.11 We have MSE(T1) = Var(T1), which equals

Var(T1) = Var (i lez/i w?) = iaj?Var(Y})/ (i a:f) - 02/ (i xf) .

Also, MSE(T3) = Var(7%), which equals
I¢-Y)_ 1y Yi\ _ 0’02
Var(Tz) = Var(n2 l’i) = 7122\/%(%) =3 Z (1/x3) .

Finally, MSE(T3) = Var(73), which equals
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Var(T3) = Var (i Yl/i xl) = iVar(Yi)/ (i xl> = nJQ/ (i m,) .

To show that Var(T3) < Var(T3): introduce a random variable X by P(X = x;) = p;
for i = 1...n, and apply Jensen with the function g(x) = 1/2%, which is strictly
convex on (0,00) (note that all ; in the cherry tree example are positive).

20.12 a Following the hint:

P(M, <k)=P(X; <k, X2 <k,...,X, <k)

_k k-1 k—n+1
SN N-U U Nt
k! (N—n)!
" (k—n)! N!
20.12b To have M, = n we should have drawn all numbers 1,2...,n, and con-
versely, so
n!(N —n)!

P(M, =n) =P(M, <n) = N

20.12 ¢ This also follows directly from part a:

P(M, = k) = P(M,, < k) — P(My, <k — 1)
k(N —n)! (k—1)! (N —n)!
(k=n)! NI (k—1-—n)! NI
_ (k=DNk = (k=n)] (N —n)!
(k—=1-—n)! N!
(k=D (N —n)!
(k—=n) NI

21.1 Setting X; = j if red appears in the ith experiment for the first time on the
jth throw, we have that X1, X2, and X3 are independent Geo(p) distributed random
variables, where p is the probability that red appears when throwing the selected
die. The likelihood function is

L(p) =P(X1=3,X2=5Xs=4)=(1-p)°p-1-p)'p- 1-p)°p
=p’(1-p)°,

so for Dy one has that L(p) = L(%) = (%)3 (1 — %)9, whereas for Dy one has that

Lp) = L(t) = (1)° (1 = 1)? =5°- L(3). It is very likely that we picked Ds.

21.2 As in the solution of Exercise 21.1, the likelihood is given by L(p) = p*(1—p)?,
where p is between 0 and 1. So the loglikelihood is given by £(p) = 3lnp+91In(1—p),
and differentiating the loglikelihood with respect to p gives:

d 3 9

— (¢ =—-—-—.

dp( ®)) p 1l-p
We find that % (¢(p)) = 0 if and only if p = 1/4, and since £(p) (and also L(p)!) at-
tains its maximum for this value of p, we find that the maximum likelihood estimate
of pisp=1/4.
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21.3 a The likelihood L(u) is given by

L(p) = CP(X =0)**P(X =1)*""P(X =2)PP(X =3)¥ P(X =4)"P(X =7)
_ Cy‘u537e—576,u.

But then the loglikelihood £(u) satisfies
{(p) =InC + 537In p — 576..
But then we have, that £'(u) = 537/u — 576, from which it follows that £'(u) = 0 if
and only if p = 537/576 = 0.93229.
21.3b Now the likelihood L(pu) is given by
L(p) = CP(X =0,1)*""P(X =2)”®P(X =3)* P(X =4)"P(X =7)
= O(1 4 p)t0,,316¢ 576w

But then the loglikelihood (1) satisfies
£(p) = InC 4 4401n(1 4 ) + 316 In p — 576 .

But then we have, that

’ 440
0(n) = — +316/u — 576,
W =1 /1
from which it follows that £ (u) = 0 if and only if 576u% — 180y + 260 = 0. We find
that © = 0.9351086.

21.4a The likelihood L(u) is given by
Lp) =PXi=z1,...,Xn=2n) =P(Xi =21) - - P(Xpn = zn)

1 T —np
R R S
= e e M= W

1! To! z1!xy!

21.4b We find that the loglikelihood £(u) is given by

T1+T2+ o+ Ty

Up) = (ZL) In(g) —In (21! - - - 2,!) — np.

Hence
S
dp %
and we find—after checking that we indeed have a maximum!—that Z,, is the max-
imum likelihood estimate for p.

)

21.4c In b we have seen that Z, is the maximum likelihood estimate for y. Due to
the invariance principle from Section 21.4 we thus find that e™*" is the maximum
likelihood estimate for e™*.

21.5a By definition, the likelihood L(u) is given by
L(p) = fu(r) -+ fulzn)

=L teew? L —lea-w?

V2r V2r

_ (zﬂ,)—nﬂ . e—% Ei‘:l(wi—u)z_




530 Full solutions from MIPS: DO NOT DISTRIBUTE

But then the loglikelihood () satisfies
__nr 1¢ N2
) = =5 ) 5 3 )

Differentiating ¢(u) with respect to p yields

n

O =3 (@i =p) = —np+3

i=1

So ¢'(p) = 0 if and only if g = Z,. Since ¢(u) attains a maximum at this value of p

(check this!), we find that Z, is the maximum likelihood estimate for .

21.5b Again by the definition of the likelihood, we find that L(o) is given by
L(o) = fo(@1) -+ fo(wn)

1 —1a2 /02 1 _
oV 2w oV 2w
2

1 )
= an(27r)7"/2(%7ﬁ Ticiei

But then the loglikelihood (o) satisfies
(o) =—-nlno — n In(27) — L Zx?

2
2 20 pt

Differentiating ¢(o) with respect to o yields

7 n 1 = 2
E(a):—ngngmi.

So ¢'(o) = 0 if and only if 0 = H%Z;lw?. Since £(o) attains a maximum at

this value of o (check this!), we find that ,/lzy_L la:f is the maximum likelihood
né—i=

estimate for o.

21.6 a In this case the likelihood function L(§) = 0 for § > x(q), and
L(8) = e™ X% for § < ().

21.6 b It follows from the graph of L(d) in a that z(;y is the maximum likelihood
estimate for 4.
21.7 By definition, the likelihood L(0) is given by

L(0) = fo(z1) - fo(xn)

2 2 2 2
T1 7%11/9 . xnefézn/g

02° 02

n
1 2
=0 (H xz) e 7 Xi=1 T

=1

But then the loglikelihood £(6) is equal to
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£(0) = —2nln6 + In (HCEZ) — # Z:cf
i=1 i=1

Differentiating £(6) with respect to 6 yields

Since £(0) attains a maximum at this value of 6 (check this!), we find that the

maximum likelihood estimate for 6 is given by /5= 37" | 22.

21.8 a The likelihood L(6) is given by

“ G(Q " 0)) B GG> ” (i(l - 9)>906 : G(l - 9))904

_ 43?39 . (2 + 9)1997 . 932 . (1 _ 9)18107

L(6)

where C' is the number of ways we can assign 1997 starchy-greens, 32 sugary-whites,
906 starchy-whites, and 904 sugary-greens to 3839 plants. Hence the loglikelihood
£(0) is given by

£(0) = In(C) — 38391n(4) + 1997 1n(2 + 0) + 321n(f) + 18101n(1 — 0).
21.8 b A short calculation shows that

de(o)

5 =0 o 381060 — 16550 — 64 = 0,

so the maximum likelihood estimate of 6 is (after checking that L(#) indeed attains
a maximum for this value of 0):

—1655 + /3714385
7620

21.8 ¢ In this general case the likelihood L(0) is given by

= 0.0357.

L) =C- G(ZJr@))n1 : G@)M : G(l —9)>n3 : G(l —e)>n4 :
= 4% (240)" 0" (1— )3T,

where C' is the number of ways we can assign n; starchy-greens, ns sugary-whites,
ng starchy-whites, and n4 sugary-greens to n plants. Hence the loglikelihood £(0) is
given by

£(0) =In(C) — nln(4) + n1In(2 + 0) 4+ n2 In(0) + (n3 + n4) In(1 — 6).
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A short calculation shows that
de(o)
de
so the maximum likelihood estimate of 6 is (after checking that L(#) indeed attains
a maximum for this value of 0):

=0 & nd> — (n1 — na — 2n3 — 2n4)0 — 2ny = 0,

niy —ne — 2n3 — 2n4 + \/(nl —ng — 2n3g — 2n4)% + 8nns
2n ’

21.9 The probability density of this distribution is given by fa.g(z) = 0 if = is not
between « and 3, and

1
f—a
Since the x; must be in the interval between a and 3, the likelihood (which is a
function of two variables!) is given by

fa,p(z) =

for a<z<p.

1
B —«
and L(a, 3) = 0 for all other values of o and 3. So outside the ‘rectangle’ (—oo, z(1)] x

[#(n), 00) the likelihood is zero, and clearly on this ‘rectangle’ it attains its maximum
in (x(1), #(n)). The maximum likelihood estimates of o and 3 are therefore & = x(1)

v = (

) for a<zny and B>z,

and ﬁ = T(n)-
21.10 The likelihood is

n (a1
La) e & @ a g (a+1)
(a) = ol atl T Tatr T @ ”xl )
Pt xg o bl

so the loglikelihood is

f() =nlna— (a—&—l)ln(ﬁmi).

i=1
Differentiating ¢(a) to a yields as maximum likelihood & = n/In (H?:l ah)
21.11 a Since the dataset is a realization of a random sample from a Geo(1/N)

distribution, the likelihood is L(N) = P(X1 = z1, X2 = x2,..., X, = ©y), where
each X; has a Geo(1/N) distribution. So

1\ "1 1\ "1 1\ "1
L(N)’(l_ﬁ) N(l‘ﬁ) N"'(“N) N

(1) G

But then the loglikelihood is equal to

UN) = —nIn N + <—n+2n:aci> In (1-%).

i=1
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Differentiating to N yields

d —n " 1
dW(f(N)) = W+ (nJr;:cz)N(N_l),

Now % (¢(N)) = 0 if and only if N = Z,. Because ¢(N) attains its maximum at
Tn, we find that the maximum likelihood estimate of N is N = Tn-

21.11b Since P(Y = k) =1/N for k =1,2,..., N, the likelihood is given by

1

L(N) = (N) for N >y,

and L(N) = 0 for N < y(,). So L(N) attains its maximum at y,); the maximum
likelihood estimate of N is N = Y(n)-
21.12 Since L(N) = P(Z = k), it follows from Exercise 4.13c that
N—

() (%)

¢
In order to see that L(NN) increases for N < %, and decreases for N > ™", consider
the ratio L(N)/L(N — 1). After some elementary calculations one finds that

L(N) =

L(N) (N—=m)(n—r)

LIN—-1) " NN-m-r+k)
So L(N) is increasing if Lf]&flz)l) = IE,Z&:"TL@T::,C))
lation shows that this is when N < &~.

> 1, and another elementary calcu-

21.13 Let N(t1,t2) be the number of customers arriving in the show between time
t1 and time t2. Then it follows from the assumption that customers arrive at the
shop according to a Poisson process with rate A, that

(A(t2 — t1))* o Mt2—t1)

P(N(t1,t2) = k) = il

for k=0,1,2,....
The likelihood L() is given by

L(A) = P(N(12.00,12.15) = 2, N(12.15,12.45) = 0, N(12.45,13.00) = 1)
+P(N(12.00,12.15) = 1, N(12.15,12.45) = 1, N(12.45,13.00) = 0) .

Since N(12.00,12.15), N(12.15,12.45), and N(12.45,13.00) are independent random
variables, we find that

Now L'(\) = 0 if and only if A + 13A% — 32\ = 0. Since A > 0, we find that
A = =LEVEIT — 9.1168439.
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21.14 Fori=1,2,...,n, r; is the realization of a continuous random variable R;.
Since the shots at the disc do not influence each other, the R; are independent, and
all have the same distribution function Fy(z) = 2?/6? if ¢ is between 0 and 6. But
then fo(z) = 22/6? for = between 0 and # (and f(z) = 0 otherwise). Since the disc
is hit each of the n shots, the likelihood is:

2ry 2r o, 210, mi
L(0) = fo(r1)fo(ra) -+ fol(rs) = T;T;"'QT _ %

for > r(,), and L(#) = 0 otherwise. But then we at once see that L(f) attains its

maximum at 6 = r(,), i.e., the maximum likelihood estimate for 0 is 0= T(n)-

21.15 At temperature ¢, the probability of failure of an O-ring is given by p(¢), so
the probability of a failure of k O-rings at this temperature, for Kk = 0,1,...,6, is
given by

(Z) (p(1))*(1 = p(1))"*

6 16 6 5 6 2
we find that the likelihood L(a,b) is given by

L(a,b) = C - (p(53))*(1 — p(53))* - - (p(53))° (1 — p(53))°

=C- _H(p(ti))"i(l —p(t)° ™,

Setting

where ¢; is the temperature and n; is the number of failing O-rings during the ith
launch, for i = 1,2...,23. But then the loglikelihood ¢(a, b) is given by

{(a,b) =InC + Z ni Inp(t:) + 2(6 — i) In(1 — p(t:)).

21.16 Since s, is the realization of a Bin(n,p) distributed random variable S,,, we
find that the likelihood L(p) is given by

L(p) = (;)p (1—=p)"—°m,

from which we see that the loglikelihood ¢(p) satisfies

{(p)=In (;:) + snlnp+ (n—s,)In(1 — p).

But then differentiating £(p) with respect to p yields that

Sn M — Sp

Op)="2— ,
(p) P

and we find that ¢'(p) = 0 if and only if p = s, /n. Since £(p) attains a maximum at
this value of p (check this!), we have obtained that s, /n is the maximum likelihood
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estimate (and S, /n the maximum likelihood estimator) for p. Due to the invariance
principle from Section 21.4 we find that 2n/s, is the maximum likelihood estimate

for 7, and that

2n
T="—+
S,

n

is the maximum likelihood estimator for 7.

22.1a Since Y ayi = 124, S 2 = 9, Sy = 4.8, Y27 = 35, and n = 3, we find
(c.f. (22.1) and (22.2)), that
ny ziyi — (O x) QP wy)  3-124-9-48 1

h= ny 22 — (Y w)? 3-35-92 4

and & = §n — BZn = 2.35.
22.1b Since r; = y; —d—ﬁxi, fori=1,...,n, wefind r1 =2—-2.35+0.25 = —0.1,

ro =18 —-2354+0.75 =02,r3 =1—-235+125 = —-0.1, and r1 +7r2 + r3 =
—-0.140.2—-0.1=0.

22.1 ¢ See Figure 29.2.

Fig. 29.2. Solution of Exercise 22.1 c.

22.2 Asin the previous exercise, we have that > z;y; = 12.4, Y x; =9, Yy = 4.8,
> z? = 35. However, now n = 4, and we find that

ponXewi —(Na)(Ty) _ 4124948 o0

nY x? — (3 z;)? 4-35—-92

Since we now have that Z,, = 9/4, and 7, = 1.2, we find that & = g, —ﬁfn = 0.9559.

22.3 a Ignoring the subscripts to the sums, we have

> wi=10, Y af =21.84, Yy, =20, and Y mys = 41.61

From (22.1) we find that the least squares estimate B of 3 is given by
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5-41.61 —10-20

B= %1810z 08

while from (22.2) it follows that the least squares estimate & of « is given by

20 10
A= 0875 — =225
*T % 5

22.3b See Figure 29.3.

f I I I I 1
-1 0 1 2 3 4

Fig. 29.3. Solution of Exercise 22.3 b.

22.4 Since the least squares estimate B of 3 is given by (22.1), we find that

~ 100-5189 — 231.7 - 321
= = 2.385.
p 100 - 2400.8 — 231.72 385

From (22.2) we find that
& = 3.21 — 2.317cdot3 = —2.316.

22.5 With the assumption that a = 0, the method of least squares tells us now to
minimize
n

$B) =3 (v - Bui).

i=1

ds(s) . S -
~35 = -2 ;(yi = Bri)zi = =2 (; Tiyi — 5;333) ;
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SO

ds(B) D1 Tili
=0 < = == .
as S
Because S(0) has a minimum for this last value of 3, we see that the least squares

estimator (3 of 3 is given by
3= i Y
i T

22.6 In Exercise 22.5 we have seen that

n
S
B="=,

2
D _ai
i=1

so for the timber dataset we find that B = 34.13. We use the estimated regression
line y = 34.13z to predict the Janka hardness. For density x = 65 we find as a
prediction for the Janka hardness y = 2218.45.

22.7 The sum of squares function S(a, 8) is now given by

S(a, B) = Zn: (yz - e"“’z")g.

=1

In order to find the values of « and § for which S(«, 3) attains a maximum, one could
differentiate S(a, 3) to a and 8. However, this does not yield workable expressions
such as those in (22.1) and (22.2). In order to find « and 3 for a given bivariate
dataset (z1,v1), (x2,¥2),- .., (Zn,yn), an iterative method is best suited.

22.8 In the model with intercept, @ and § are chosen in such a way, that S(a, 8) =
S r? is minimal. In the model with no intercept we chose § in such a way, that
S(0,8)=>1, r? is minimal. Clearly, in this last model the residual sum of squares
> r? is greater than, or equal to the residual sum of squares in the model with
intercept.

22.9 With the assumption that 8 = 0, the method of least squares tells us now to
minimize

Now
dS(«)
da

=2 Z(yz — ) = —2(ngn — na) = —2n(Jn — ).

So %(;‘) = 0 if and only if a = g,. Since S() has a minimum for this last value of
«a, we see that Y, is the least squares estimator & of a.

22.10a One has that n = 3, >z = 3, Y v = 4, fo =5, and Y xy; = 2,

so 3 = $2-31 = —1. Since Z3 = 1 and §3 = 4/3, we find that & = 7/3. Since

ri=—1/3,r2 =2/3, and r3 = —1/3, we find that A&, B) = |r1] + |r2| + |r3] = 4/3.
Note that S(&,3) =7 +r3 +r3 =1/3.
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22.10b A(a,—-1)=12—a+0/+2—a+1]+]0—a+2|. For 2 < a < 3 we find
that A(a, —1) = @ — 1. For a > 3 we find that A(a, —1) = 3a — 7, while for o < 2
we find that A(a, —1) = 7 — 3. We find that A(a, —1) < (&, 8) when « is between
17/9 and 7/3. Note that A(c, —1) is minimal (and equal to 1) for o — 2.

22.10 ¢ Since A(2,—1) = 1, we must have that 1 < a < 3 (since otherwise A(«, 8) >
|2 — a+ 0] > 1). Clearly we must have that 8 < 0 (since otherwise A(«,3) >
|0 — @ — 20| > 1). Considering the various cases for « yields that A(a, 3) attains its
minimum at « =2 and 8 = —1.

22.11 a In the present set-up one has to minimize

n

S@B.v) =" (i — (Bai +42D))”

i=1

Differentiating S(3,7) to 8 and ~ yields

% = —Z;Ii (yi — B —’yx?)

and N
g—i = —2;96? (yi — B —’yxf) .
We find that . . .
G0 e AYaleaY el = s
i=1 i=1 i=1
and

% =0 < ﬁzn:x?Jrvzn:x? :zn:xfyi.
=1 1=1 =1

22.11 b Using Cramer’s rule from linear algebra now yields that

Sy Yoad
S aiy Y @
PRI
S}yl

_ (ZaY)(Tai) - () (C aiYi)

b= T D) ah) - (D)2

and )
2T DTy
Y- S Yty
PIEDIE
Yai Yl
Since S(f,7) is a ‘vase’, the above stationary point (3,~) is a global minimum for
S(B,7). This finishes the exercise.

_ (X)) 2lYs) — (2 (C @aYi)
X)) - (=)

22.12 a Since the denominator of B is a number, not a random variable, one has

that
J_ Bn(Sey) - (S (2 Y
P =T s Sy

Furthermore, the numerator of this last fraction can be written as
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E [nz.'riYi] —-E [(Z :UZ)(Z Yz)] ,
03 @B - (3 e YV

22.12b Substituting E[Y;] = a + Bz; in the last expression, we find that

7 _ 0¥ (wila+ f2) - (S o) [l + )]
ol = ey e~ (S a) |

22.12 ¢ The numerator of the previous expression for E [B] can be simplified to

naY i +nBY 27 —naY xi — (X ) (X i)
ny z? — (L)’ ’

which is equal to

which is equal to

B et — (L))
nya? — (X i)’
22.12d From c it now follows that E [B] =4, i.e., B is an unbiased estimator for 3.

23.1 This is the case: normal data with variance known. So we should use the
formula from Section 23.2 (the case variance known):

g o
T — 1.96——, %p + 1.96— | ,
<x 96ﬁm + 96ﬁ)

where T, = 743, 0 = 5 and n = 16. Because z,/2 = 20.025 = 1.96, the 95% confidence
interval is:

5 5
743 —1.96 - —=,743 +1.96 - —= | = (740.55, 745.45).
< V16 vV 16) ( )

23.2 This is the case: normal data with variance unknown. So we should use the
formula from Section 23.2 (the case variance unknown):

— STL — STL
(l'n - tn—l,a/Q%a Tn + tn—l,a/Qﬁ) ’

where Z, = 3.54, s, = 0.13 and n = 34. Because t,_1 o/2 = t33,0.00 & t30,0.01 =
2.457, the 98% confidence interval is:

0.13 0.13
3.54 — 2457 - ——,3.54 4+ 2.457 - —— | = (3.485, 3.595).
< V34 V?T4> ( )

One can redo the same calculation using t33,0.01 = 2.445 (obtained from a software
package), and find (3.4855, 3.5945).

23.3 This is the case: normal data with variance unknown. So we should use the
formula from Section 23.2 (the case variance unknown):

_ S _ s
(an - tn—l,a/27%a Tn + tn—l,a/QT%) )

where Z, = 93.5, s, = 0.75 and n = 10. Because ln_1,a72 = t9,0.025 = 2.262, the
95% confidence interval is:

(93.5 —2.262. 275 9351+ 2.262. %) = (92.96, 94.036).

V10’ V10
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23.4 This is the case: normal data with variance unknown. So we should use the
formula from Section 23.2 (the case variance unknown):

_ Sn _ Sn
<$n - tnfl,a/Zﬁv Tn + tnfl,a/2ﬁ> )

where Z,, = 195.3, s, = 16.7 and n = 18. Because th_1,a72 = t17,0.025 = 2.110, the
95% confidence interval is:

16.7 16.7
195.3 — 2.110 - —,195.3 + 2.110 - — | = (186.99, 203.61).
( V18 \/18> ( )

23.5a The standard confidence interval for the mean of a normal sample with
unknown variance applies, with n = 23, T = 0.82 and s = 1.78, so:

(ﬂf — 122,0.025 *

s s
\/72?), T + t22,0.025 \/72—3> .

The critical values come from the £(22) distribution: t22,0.025 = 2.074. The actual
interval becomes:

<0.82 —2.074- ﬁ7 0.82+2.074 - ﬂ) = (0.050, 1.590).
V23 V23

23.5b Generate one thousand samples of size 23, by drawing with replacement
from the 23 numbers

1.06, 1.04, 262, ..., 2.0L.

For each sample x},23, ..., 233 compute: t* = Z33 — 0.82/(s33/v/23), where sb; =
?12 >o(xy —x33)2.

23.5 ¢ We need to estimate the critical value ¢} such that P(T™ < ¢j') =~ 0.025. We

take ¢; = —2.101, the 25th of the ordered values, an estimate for the 25/1000 = 0.025

quantile. Similarly, ¢f is estimated by the 976th, which is 2.088.

The bootstrap confidence interval uses the ¢* values instead of the t-distribution

values &1, _1 /2, but beware: ¢f is from the left tail and appears on the right-hand
side of the interval and ¢}, on the left-hand side:

Fn— 2 G —
n u\/ﬁ’ n l\/ﬁ .

Substituting ¢ = —2.101 and ¢}, = 2.088, the confidence interval becomes:

1.78 1.78
0.82 —2.088 - ——=, 0.82 +2.101 - —— | = (0.045, 1.600).
< V23 Jﬁ) ( )

23.6 a Because events described by inequalities do not change when we multi-
ply the inqualities by a positive constant or add or subtract a constant, the
following equalities hold: P(/in <0< ﬁn) = PBL,+7<3u+7<3U,+7) =
P(3Ly, < 3u < 3Un) =P(Ln < u < Uy), and this equals 0.95, as is given.

23.6 b The confidence interval for 0 is obtained as the realization of (En, Un)7 that

is: (In,@n) = (3ln + 7,3u, + 7). This is obtained by transforming the confidence
interval for p (using the transformation that is applied to u to get 6).
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23.6 ¢ We start with P(L, < u < U,) = 0.95 and try to get 1 — g in the mid-
dle: P(Ln < p<Un) = P(=Ln>—p>-Un) = PA—-Lo>1—-p>1-U,) =
P(1-U,<1—pu<1-Ly,), where we see that the minus sign causes an inter-
change: L, =1 —U, and U,, = 1 — L,. The confidence interval: (1 — 5,1 — (=2)) =
(—4,3).

23.6d If we knew that L, and U, were always positive, then we could conclude:
P(L, < p<Uy) = P(L% <p?< US) and we could just square the numbers in the
confidence interval for p to get the one for 8. Without the positivity assumption, the
sharpest conclusion you can draw from L, < pu < U, is that u? is smaller than the
maximum of L2, and U;. So, 0.95 = P(L, < p < Un) < P(0 < p® < max{L3,U;})
and the confidence interval [0, max{l2,u2}) = [0,25) has a confidence of at least
95%. This kind of problem may occur when the transformation is not one-to-one
(both —1 and 1 are mapped to 1 by squaring).

23.7 We know that (I,,un) = (2,3), where I, and wu, are the realizations of L,
and U,, that have the property P(L,, < pu < U,) = 0.95. This is equivalent with

P(e*"" <e M < e*L") =0.95,

so that (e7*,e7%) = (0.050,0.135) is a 95% confidence interval for P(X = 0) = e *.

23.8 Define random variables

X,; = weight of ith bottle together with filling amount
W, = weight of ith bottle alone
Y: = weight of ith filling amount

so that X; = W;+Y;. It is given that W; has a N (250, 152) distribution and according
to Exercise 23.1, Y; has a N(uy, 52). Since they are independent X; = W, + Y, has
a normal distribution with expectation p = 250 + p, and variance 152 + 5% = 250:
Xi ~ N (250 + py, 250). Our data consist of the weights of 16 filled bottles of wine,
Z1,...,x16. On the basis of these we can construct a confidence interval for u. Since
we are in the case: normal data with known variance, this is

_ o _ o
(mn - za/2ﬁ7xn + Za/?ﬁ) ’
where Z,, = 998, 0 = v/250 and n = 16. Because Zaj2 = Z0.025 = 1.96, the 95%
confidence interval is:

(998 —1.96 - ﬂ, 998 +1.96 - ﬂ) = (990.25, 1005.75).

V16 V16

Since, this is a 95% confidence interval for u = 250+ p,,, the 95% confidence interval
for py, is given by (990.25 — 250, 1005.75 — 50) = (740.25, 755.75).

23.9a Since we do not assume a particular parametric model, we are dealing with
an empirical bootstrap simulation. Generate bootstrap samples =7, z3,.. .,z size
n = 2608, from the empirical distribution function of the dataset, which is equivalent
to generate from the discrete distribution with probability mass function:
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a 0 1 2 3 4
pla) 57/2608 203/2608 383/2608 525/2608 532/2608
a 5 6 7 8 9
p(a) 408/2608 273/2608 139/2608 45/2608 27/2608
a 10 11 12 13 14
p(a) 10/2608  4/2608 0 1/2608  1/2608

Then determine:
« T, —3.8715

55 /V/2608
Repeat this one thousand times. Next estimate the values ¢ and ¢, such that

P(T" <¢)=0.025 and P(T" >c,) = 0.025.

The bootstrap confidence interval is then given by:

= « Sno _ % Sn
(mn — Cu%,xn —C %> .
23.9b For a 95% confidence interval we need the empirical 0.025-quantile and the

0.975-th quantile, which we estimate by the 25th and 976th order statistic: ¢; ~ 1.862
and ¢, ~ —1.888. This results in

1.92257 3.8715 — (—1.888) 1.9225
V2608 V2608

23.9c The (estimated) critical values that we would obtain from the table are
—2.228 and 2.234, instead of —1.888 and 1.862 we used in part b. Hence, the resulting
interval would be larger.

23.10 a This interval has been obtained from

_ Sn _ Sn
(mn - tnfl,a/2%a Tn + tnfl,a/2ﬁ> )

so that the sample mean is in the middle and must be equal to (1.6 4+ 7.8)/2 = 4.7.

23.10b From the formula we see that half the width of the 95% confidence interval
is

<3.8715 —1.862 ) = (3.801, 3.943).

7.8 —1.6 Sn Sn
—— =31=t — =2.131—.
5 15,0.025 un NG

Similarly, half the width of the 99% confidence interval is

_ogarSn Z 294 g gy Sn 2947 o ) oy

Sn
£15,0.005 —
19:0-005° Jn 2131 vn 2131

Hence the 99% confidence interval is
(4.7 — 4.287, 4.7 + 4.287) = (0.413, 8.987).

23.11 a For the 98% confidence interval the same formula is used as for the 95%
interval, replacing the critical values by larger ones. This is the case, no matter
whether the critical values are from the normal or ¢-distribution, or from a bootstrap
experiment. Therefore, the 98% interval contains the 95%, and so must also contain
the number 0.
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23.11 b From a new bootstrap experiment we would obtain new and, most prob-
ably, different values c;, and ¢f. It therefore could be, if the number 0 is close to
the edge of the first bootstrap confidence interval, that it is just outside the new
interval.

23.11 ¢ The new dataset will resemble the old one in many ways, but things like the
sample mean would most likely differ from the old one, and so there is no guarantee
that the number 0 will again be in the confidence interval.

23.12 a This follows immediately from the change of units rule for normal random
variables on page 112 and the fact that if the Z;’s are independent, so are the
uw+oZi’s.

23.12b We have

X:

S
S

IR
i=1

From this we also find that

n 1 n _
+o0Z;)=pu+o-— Zi=u+oZz.
;(u ) =1 n; u

Xi—X=u+dZ)— (n+o2)=0(Z; - Z)

It follows that

so that Sx = oSz.

23.12 ¢ The equality follows immediately from part b, by inserting X — pu = o7,
and Sx = 0Sz. The right hand side is the studentized mean for a random sample
from a N(0,1) distribution, and therefore its distribution does not depend on p
and o. The left hand side is the studentized mean for a random sample from a
N(u,0?) distribution. Since the two are equal, also their distributions are, which
means that the distribution of the studentized mean for a random sample from a
N(u,0?) distribution (the left hand side) also does not depend on y and o.

24.1 From Section 24.1, using 20.05 = 1.645 we find the equation:

70 ? (1.645)2
(m‘p) ~ o P-P <O

This reduces to
1.0271p — 1.4271p + 0.49 < 0.

The zeroes of this parabola are

—(—1.4271) 4 /(—1.4271)2 — 4-1.0271 - 0.49
2.1.0271

and the 90% confidence interval is (0.6202,0.7693).

= 0.6947 £ 0.0746

P12 =

24.2a Since n = 6 is too small to expect a good approximation from the central
limit theorem, we cannot apply the Wilson method.
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24.2 b Solve ) )
140 (1.96)
- — 1 — =
<250 p) 250 PL=P) =0
or
1.0154 p* — 1.1354p + 0.3136 = 0.
That is

—(—1.1354) + /(—1.1354)2 — 4 - 1.0154 - 0.3136
2-1.0154

and the 90% confidence interval is (0.4980, 0.6202).

24.3 The width of the confidence interval is 2 - 2.576 - 0 /+/n, where o = 5. So, we
require (see Section 24.4):

= 0.5591 £ 0.0611

P12 =

n >

2
<%) = (25.76)* = 663.6,

that is, at least a sample size of 664.

24.4 a The width of the confidence interval will be about 2¢,,—1,0.05 s/v/n. For s we
substitute our current estimate of o, 0.75, and we use t,—1,0.05 = 20.05 = 1.645, for
the moment assuming that n will be large. This results in

n >

(2 -1.645 - 0.75

2
01 > = 608.9,

so we use n = 609 (which is indeed large, so it is appropriate to use the critical value
from the normal distribution).

24.4b In our computation, we used s = 0.75. From the new dataset of size 609 we
are going to compute sgo9 and use that in the computation. If sgo9 > 0.75 then the
confidence interval will be too wide.

24.5a From

X —np
Pl —z4/0 < ———2, =1—-«
( VOE “)

X Zo/2 X Za/2
P{— - <p< — =1-o.
(n o P Tam @

So, the approximate 95% confidence interval is

we deduce

T Z0.05 T n 20.05
n 2yn'n 2yn)"
The width is 220.05/(2v/1) = 20.05/+/n and so n should satisfy 1.96/y/n < 0.01 or
n > (196)% = 38416.
24.5b The confidence interval is
19477 1.96
38416 2./38416

so of the intended width.

= 0.5070 £ 0.005,
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24.6 a The environmentalists are interested in a lower confidence bound, because
they would like to make a statement like “We are 97.5% confidence that the con-
centration exceeds 1.68 ppm [and that is much too high.]” We have normal data,
with o unknown so we use s16 = v1.12 = 1.058 as an estimate and use the criti-
cal value corresponding to 2.5% from the ¢(15) distribution: t15,0.025 = 2.131. The
lower confidence bound is 2.24 —2.131-1.058//16 = 2.24 —0.56 = 1.68, the interval:
(1.68,0).

24.6 b For similar reasons, the plant management constructs an upper confidence
bound (“We are 97.5% confident pollution does not exceed 2.80 [and this is ac-
ceptable.]”). The computation is the same except for a minus sign: 2.24 4 2.131 -
1.058/4/16 = 2.24 4 0.56 = 2.80, so the interval is [0, 2.80). Note that the computed
upper and lower bounds are in fact the endpoints of the 95% two-sided confidence
interval.

24.7 a From the normal approximation we know

f o
P<_ZO.025 < —< Zo4025> ~ 0.95
NG

P((W)Q < 23025) ~0.95,

P(()_(n —p)? < (1.96) %) ~ 0.95.

or
ie.,

Just as with the derivation of the Wilson method (Section 24.1) we now conclude
that the 95% confidence interval contains those u for which

(20— )” < (1.96)°2.

24.7b We need to solve (Z, — u)? — (1.96)%u/n = 0, where Z, = 3.8715 and
n = 2608, resulting in

9 (1.96)2 s
u (2 3.8715 + 560 w4+ (3.8715)° =0,

or
p? — 774460 + 14.9889 = 0.
From the roots we find the confidence interval (3.7967,3.9478).

24.7 ¢ The confidence interval (3.7967,3.9478)is almost the same as the one in Ex-
ercise 23.9 b. This is not surprising: n is very large, so the normal approximation
should be very good.

24.8 a We solve

(%—p> - (1'35) p(l—p)=0

1.1670p* — 1.4714p + 0.4253 = 0,
from which we find the confidence interval (0.4489,0.8119).

or
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24.8 b Replacing the 1.96 in the equation above by z0.05 = 1.645, we find (0.4808,0.7915).
The appropriate one-sided confidence interval will provide us with a lower bound
on the outer lane winning probability p, so it is (0.4808, 1].

24.9a From Section 8.4 we know: P(M <a) = [Fx(a)]'?, so P(M/0 <t) =
P(M < 0t) = [Fx(#t)]'>. Since X; has a U(0,6) distribution, Fx(#t) = t, for
0 <t < 1. Substituting this shows the result.

24.9b For ¢; we need to solve (¢;)*2 = a/2, or ¢; = (o/2)Y/1? = (0.05)1/12 = 0.7791.
For ¢, we need to solve (c,)'? = 1—a/2, or ¢, = (1—a/2)**? = (0.95)1/1% = 0.9958.
24.9c From b we know that P(c; < M/0 < ¢,) = P(0.7790 < M /6 < 0.9958) =
0.90. Rewriting this equation, we get: P(0.77900 < M < 0.995860) = 0.90 and
P(M/0.9958 < # < M/0.7790) = 0.90. This means that (m/0.9958, m/0.7790) =
(3.013, 3.851) is a 90% confidence interval for 6.

24.9d From b we derive the general formula:

M

P((a/2)1/" <<= a/2)1/”> =1-a.

The left hand inequality can be rewritten as § < M/(a/2)*/™ and the right hand
one as M/(1 — a/2)"/™ < 6. So, the statement above can be rewritten as:

M M
P((l SDICIAE <a/z>1/n> ST

so that the general formula for the confidence interval becomes:

((1 o (a/&/n) '

24.10 a From Section 11.2 we know that S, being the sum of n independent Exp ()
random variables, has a Gam(n, A) distribution. From Exercise 8.4 we know: AX; has
an Ezp (1) distribution. Combining these facts, it follows that AS, = AX1+---+AX,
has a Gam(n, 1) distribution.

24.10b From the quantiles we see
0.9 = P(qo0.05 < AS20 < go.95)
=P(13.25 < ASz < 27.88)
= P(13.25/S20 < X < 27.88/52) .

Noting that the realization of Sag is €1 + - -+ 4+ 20 = 20 20, we conclude that

13.25 27.88 o 0.6625 1.394
205207 20 T20 o T20 ’ T20

is a 95% confidence interval for .

25.1 The alternative hypothesis should reflect the belief that arrival delays of trains
exhibit more variation during rush hours than during quiet hours. Therefore take
Hi:01 > 09.

25.2 The alternative hypothesis should reflect the belief that the number of babies

born in Cleveland, Ohio, in the month of September in 1977 is higher than 1472.
Therefore, take Hy : p > 1472.
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25.3 When the regression line runs through the origin, then o = 0. One possible
testing problem is to test Ho : o = 0 against Hi : a # 0. If Hp : o = 0 is rejected in
favor of Hy : a # 0, the parameter a should be left in the model.

25.4 a Denote the observed numbers of cycles for the smokers by X1, Xo,..., Xn,
and similarly Y1,Ys,..., Yy, for the nonsmokers. A test statistic should compare
estimators for p1 and p2. Since the geometric distributions have expectations 1/p1
and 1/p2, we could compare the estimator 1/X,,, for p; with the estimator 1/Y,,, for
pa, or simply compare X,,, with Y,,,. For instance, take test statistic T' = X,,, — Yi,.
Values of T close to zero are in favor of Hyp, and values far away from zero are in
favor of Hy. Another possibility is T = X'nl/f/nQ.

25.4b In this case, the maximum likelihood estimators p1 and p2 give better indi-
cations about p; and p2. They can be compared in the same way as the estimators
in a.

25.4 ¢ The probability of getting pregnant during a cycle is p; for the smoking
women and pz2 for the nonsmokers. The alternative hypothesis should express the
belief that smoking women are less likely to get pregnant than nonsmoking women.
Therefore take H; : p1 < po.

25.5a When the maximum is greater than 5, at least one X is greater than 5 so that
0 must be greater than 5, and we know for sure that the null hypothesis is false.
Therefore the set of relevant values of 71 = max{X1, Xo,...,X,} is the interval
[0, 5]. Similar to Exercise 8.15, one can argue that E[T1] = nf/(n + 1). Hence values
of T close to 5n/(n + 1) are in favor of Hy. Values of 71 in the neighborhood of 0
indicate that 8 < 5, and values of T very close to 5 indicate that 6 > 5. Both these
regions are in favor of H;.

values of T; in values of T in values of T in
favor of Hq favor of Hy favor of Hq

[ T |
0 ey 5

25.5b When the distance between 2X,, and 5 is greater than 5, then 2X,, must be
greater than 10, which means that at least one X; is greater than 5. In that case we
know for sure that the null hypothesis is false. Therefore the set of relevant values
of Tb = |2X,, — 5| is the interval [0, 5]. Since X,, will be close to /2, values of T»
close to zero are in favor of Hy. Values of T far away from zero either correspond
to 2X, far below 5, which indicates 6 < 5, or correspond to 2X, far above 5, which
indicates @ > 5. Hence values of T» far away from zero are in favor of Hj.

values of T5 in values of T5 in
favor of Hy favor of Hq
0 5

25.6 a The p-value P(T > 2.34) = 0.23 is larger than 0.05, so do not reject.

25.6 b The p-value P(T' > 2.34) = 1 — P(T < 2.34) = 0.77 is larger than 0.05, so
do not reject.

25.6 ¢ The p-value P(T" > 0.03) = 0.968 is larger than 0.05, so do not reject.
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25.6d The p-value P(T > 1.07) = 1 — P(T < 1.07) = 0.019 is less than 0.05, so
reject.

25.6 e The p-value P(T > 1.07) > P(T > 2.34) = 0.99, which is larger than 0.05,
so do not reject.

25.6f The p-value P(T' > 2.34) < P(T > 1.07) = 0.0.019, which is smaller than
0.05, so reject.

25.6 g The p-value P(T > 2.34) < P(T > 1.07) = 0.200. Therefore, the p-value is
smaller than 0.200, but that does not give enough information to decide about the
null hypothesis.

25.7 a Since the parameter p is the expectation of T, values of T" much larger than
1472 suggest that p > 1472. Because we test Ho : p = 1472 against Hy : u > 1472,
the more values of T' are to the right, the stronger evidence they provide in favor
Of H1 .

25.7b According to part a, values to the right of ¢ = 1718 bare stronger evidence
in favor of Hi. Therefore, the p-value is P(T > 1718), where T has a Poisson dis-
tribution with u = 1472. Because the distribution of 1" can be approximated by a
normal distribution with mean 1472 and variance 1472, we can approximate this
probability as follows

T — 1472 1718 — 1472

>
V1472 T /1472

where Z has an N(0, 1) distribution. From Table 7?7 we see that the latter probability
is almost zero (to be precise, 7.28 - 10~*!, which was obtained using a statistical
software package).

P(T > 1718) = P( ) ~P(Z > 6.412)

25.8 The values of F;, and ® lie between 0 and 1, so that the maximal distance
between the two graphs also lies between 0 and 1. In fact, since F;, has jumps of size
1/n, the minimal value of T' must be half the size of a jump: 1/(2n). This would
correspond to the situation, where at each observation, the graph of ® precisely runs
through the middle of the two heights of F,,. When the graph of F), lies far to the
right (or to the left) of that of ®, the maximum distance between the two graphs
can be arbitrary close to 1.

When the dataset is a realization from a distribution different from the standard
normal, the corresponding distribution function F' will differ from . Since F,, = F
(recall Table 17.2), the graph of F}, will show large differences with that of ® resulting
in a relatively large value of T'. On the other hand, when the dataset is indeed a
realization from the standard normal, then F, =~ &, resulting in a relative small
value of T. We conclude that only large values of T close to 1 are evidence against
the null hypothesis.

25.9 Only values of Tk close to 1 are evidence against the null hypothesis. There-
fore the p-value is P(Tks > 0.176). On the basis of the bootstrap results, this proba-
bility is approximated by the relative frequency of Txs-values greater than or equal
to 0.176, which is zero.

25.10 a The alternative hypothesis should express the belief that the gross calorific
exceeds 23.75 MJ /kg. Therefore take Hy : pu > 23.75.
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25.10b The p-value is the probability P(X, > 23.788) under the null hypothesis.

We can compute this probability by using that under the null hypothesis X,, has a
N(23.75,(0.1)?/23) distribution:

Xn —23.75 _ 23.788 — 23.75
01/v23 =~ 0.1/V23
where Z has an N(0,1) distribution. From Table ?? we find P(Z > 1.82) = 0.0344.

25.11 A type I error occurs when p = 0 and |¢| > 2. When p = 0, then T has an
N(0,1) distribution. Hence, by symmetry of the N(0,1) distribution and Table ??,
we find that the probability of committing a type I error is

P(X, > 23.788) = P( ) =P(Z > 1.82),

P(IT| >2)=P(T < —2)+P(T >2) =2-P(T > 2) = 2-0.0228 = 0.0456.

26.1 A type I error is to falsely reject the null hypothesis, i.e., to falsely conclude
“suspect is guilty”. This happened in 9 out of 140 cases. Hence, the probability of a
type I error is 9/140 = 0.064.

A type II error is to falsely accept the null hypothesis, i.e., to falsely conclude
“suspect is innocent”. This happened in 15 out of 140 cases. Hence, the probability
of a type II error is 15/140 = 0.107.

26.2 According to Exercise 25.11, we do not reject if |T'| < 2. Therefore the prob-
ability of a type II error is

P(|T|<2)=P(-2<T<2)=PT<2)-P(T < -2),

where T has a N(1,1) distribution. Using that 7' — 1 has a N(0, 1) distribution, we
find that

PT<2)-PT<-2)=PT-1<1)-P(T-1<-3)
= 0.8413 — 0.0013 = 0.84.

26.3a A type I error is to falsely reject the null hypothesis Hy : = 2. We reject
when X < 0.1 or X > 1.9. Because under the null hypothesis, X has a U(0,2)
distribution, the probability of committing a type I error is

P(X <0.1[60=2)+P(X >19]|0=2)=0.05+0.05=0.1.

26.3b In this case a type II error is to falsely accept the null hypothesis when
0 = 2.5 We accept when 0.1 < X < 1.9. Because under 6§ = 2.5, X has a U(0,2.5)
distribution, the probability of committing a type I error is

1.9-01

25
26.4 a Since T has a Bin(144, p) distribution, values of T close to 144/8 = 18 are in
favor of the null hypothesis. Values of T' far above 18 indicate that p > 1/8, whereas

values far below 18 indicate that p < 1/8. This means we reject only for values of T'
far above 18. Hence we are only dealing with a right critical value.

26.4b Denote the right critical value by c¢. Then we must solve P(T' > ¢) = 0.01.
Using the normal approximation for the binomial distribution,

P(01< X <1.9]6=25)= 0.72.
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PT>e)nP(z> 2P ) _p|z>=18 )
np(1 —p) 18-

0|~

where Z has a N(0,1) distribution. We find ¢ by solving
c—18
18-

= Z20.01 = 2326,

[e<] BN

which gives ¢ = 27.2. Because T' can only take integer values, the right critical value
is taken to be 28, and the critical region is {28,29,---,144}. Since the observed
number ¢ = 29 falls in the critical region, we reject Ho : p = 1/8 in favor of
H,:p>1/8.

26.5a The p-value is P(X > 15) under the null hypothesis Hy : p = 1/2. Using
Table 26.3 we find P(X > 15) = 1 — P(X < 14) = 1 — 0.8950 = 0.1050.

26.5b Only values close to 23 are in favor of Hy : p > 1/2, so the critical region is
of the form K = {c,c+1,...,23}. The critical value c is the smallest value, such
that P(X > ¢) < 0.05 under Hy : p =1/2, or equivalently, 1 — P(X < ¢—1) < 0.05,
which means P(X < ¢ — 1) > 0.95. From Table 26.3 we conclude that ¢ —1 = 15, so
that K = {16,17,...,23}.

26.5¢ A type I error occurs if p = 1/2 and X > 16. The probability that this
happens is P(X > 16| p=1/2) =1-P(X <15 |p=1/2) =1 — 0.9534 = 0.0466,
where we have used Table 26.3 once more.

26.5d In this case, a type II error occurs if p = 0.6 and X < 15. To approximate
P(X <15|p=0.6), we use the same reasoning as in Section 14.2, but now with
n = 23 and p = 0.6. Write X as the sum of independent Bernoulli random variables:

X = Ri + -+ + Ry, and apply the central limit theorem with x = p = 0.6 and
% =p(1 — p) = 0.24. Then

P(X <15) = P(Ri +---+ R, < 15)
:P<R1+~--—|—Rn—n,u< 15—nu>

o\/n ~ ovn
15 —-13.8
=P 2oz > ———— | =~ ®(0.51) = 0.6950.
( = \/oﬂ\/%) (0.51)

26.6 a Because T has a Pois(u) distribution (see Exercise 25.7), we always have
E[T] = p. Therefore values of T around 1472 are in favor of the null hypothesis,
values of T far to the left of 1472 are in favor of p < 1472, and values of T far to the
right 1472 are in favor of p > 1472. Therefore, only values far to the right of 1472
are in favor of Hi : u > 1472, so that we only have a right critical value.

26.6 b Since, according to part a, we only have a right critical value ¢, we must
solve P(T > ¢) = 0.05. Using the normal approximation

P(Tzc):P(T*”>C*“) mP<Z2ﬂ>,

VE T B V1472
where Z has a N(0,1) distribution. We find ¢ by solving
c— 1472

a2 = 20.05 = 1.645,
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which gives ¢ = 1535.1. Because T' can only take integer values we take right critical
value 1536, and critical region {1536, 1537, co}. The observed number 1718 falls into
the critical region, so that we reject Ho : p = 1472 in favor of Hy : p > 1472.

26.7 We must solve P(X1 + X2 < ¢) = 0.05 under the null hypothesis. Under the
null hypothesis, X1 and X2 are independent random variables with a U(0, 1) distri-
bution. According to Exercise 11.5, the random variable T'= X; + X2 has density
f#) =t for 0 <t <1, and f(t) =2—t, for 1 <¢ < 2. Since this density integrates
to 0.5 for 0 <t < 1, we can find ¢ by solving

/ tdt =P(T < c) = 0.05,
0

or equivalently %02 = 0.05, which gives left critical value ¢ = 0.316. The correspond-
ing critical region for T'= X1 + X5 is [0, 0.316].

26.8 a Test statistic T = X,, takes values in (0, 00). Recall that the Ezp()\) distri-
bution has expectation 1/, and that according to the law of large numbers X, will
be close to 1/\. Hence, values of X,, close to 1 are in favor of Hp : A = 1, and only
values of X,, close to zero are in favor Hy : A > 1. Large values of X, also provide
evidence against Hp : A = 1, but even stronger evidence against H; : A > 1. We
conclude that 7' = X,, has critical region K = (0, ¢;]. This is an example in which
the alternative hypothesis and the test statistic deviate from the null hypothesis in
opposite directions.

Test statistic 7/ = e~ ~ takes values in (0, 1). Values of X,, close to zero correspond
to values of T' close to 1, and large values of X,, correspond to values of T” close
to 0. Hence, only values of T close to 1 are in favor H; : A > 1. We conclude that T’
has critical region K’ = [cy, 1). Here the alternative hypothesis and the test statistic
deviate from the null hypothesis in the same direction.

26.8 b Again, values of X, close to 1 are in favor of Hy : A = 1. Values of X,, close
to zero suggest A > 1, whereas large values of X,, suggest A < 1. Hence, both small
and large values of X,, are in favor of H; : A # 1. We conclude that 7' = X,, has
critical region K = (0, ¢;] U [cu, 00).

Small and large values of X, correspond to values of T” close to 1 and 0. Hence,
values of T both close to 0 and close 1 are in favor of Hj : A # 1. We conclude that
T’ has critical region K’ = (0,¢;] U|[c},1). Both test statistics deviate from the null
hypothesis in the same directions as the alternative hypothesis.

26.9a Test statistic T = (X,,)? takes values in [0, 00). Since p is the expectation
of the N(u, 1) distribution, according to the law of large numbers, X,, is close to j.
Hence, values of X,, close to zero are in favor of Hp : u = 0. Large negative values
of X,, suggest p < 0, and large positive values of X, suggest u > 0. Therefore, both
large negative and large positive values of X,, are in favor of Hy : u # 0. These
values correspond to large positive values of T', so T has critical region K = [cy, 00).
This is an example in which the test statistic deviates from the null hypothesis in
one direction, whereas the alternative hypothesis deviates in two directions.

Test statistic 7" takes values in (—o0,0) U (0,00). Large negative values and large
positive values of X, correspond to values of 7" close to zero. Therefore, 7" has
critical region K’ = [c},0) U (0, cy]. This is an example in which the test statistic
deviates from the null hypothesis for small values, whereas the alternative hypothesis
deviates for large values.
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26.9b Only large positive values of X,, are in favor of u > 0, which correspond to
large values of T'. Hence, T has critical region K = [cy, 00). This is an example where
the test statistic has the same type of critical region with a one-sided or two-sided
alternative. Of course, the critical value ¢, in part b is different from the one in
part a.

Large positive values of X,, correspond to small positive values of T”. Hence, T" has
critical region K’ = (0, ¢,,]. This is another example where the test statistic deviates
from the null hypothesis for small values, whereas the alternative hypothesis deviates
for large values.

27.1 a The value of the t-test statistic is
Tn —10 11—1072
sn/vVn 2/\/4 '

The right critical value is ,,_1 /2 = t15,0.025 = 2.131. The observed value t = 2 is
smaller than this, so we do not reject Ho : 4 = 10 in favor of H; : p # 10.

t=

27.1b The right critical value is now t,—1,o = t15,0.05 = 1.753. The observed value
t = 2 is larger than this, so we reject Hp : = 10 in favor of H; : p > 10.

27.2 a The belief that the pouring temperature is at the right target setting is put
to the test. The alternative hypothesis should represent the belief that the pouring
temperature differs from the target setting. Hence, test Hyp : pu = 2550 against
Hi @y # 2550.

27.2b The value of the t-test statistic is
Zn — 2550  2558.7 — 2550
sn/vVn V/517.34//10

Because H; : p # 2550, both small and large values of T are in favor of H;. Therefore,
the right critical value is t,,_1,4/2 = t9,0.025 = 3.169. The observed value t = 1.21 is
smaller than this, so we do not reject Ho : p = 2550 in favor of H; : u # 2550.

1.21.

27.3 a The alternative hypothesis should represent the belief that the load at failure
exceeds 10 MPa. Therefore, take Hy : p > 10.

27.3 b The value of the ¢-test statistic is

Z,—10 13.71-10 _
sn/v/n 3.55/V/22
Because Hi : p > 10, only large values of T are in favor of H;. Therefore, the right

critical value is tn—1,a = t21,0.05 = 1.721. The observed value ¢t = 4.902 is larger
than this, so we reject Ho : u = 10 in favor of Hy : p > 10.

27.4 The value of the t-test statistic is
t— T, —31 _ 31.012—31
sn/v/n0.1294/4/22
Because Hi : u > 31, only large values of T" are in favor of Hi. Therefore, the right

critical value is tp—1,o = t21,0.00 = 2.518. The observed value ¢t = 0.435 is smaller
than this, so we do not reject Ho : p = 31 in favor of H; : pu > 31.

t= 4.902.

= 0.435.
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27.5a The interest is whether the inbreeding coefficient exceeds 0. Let u represent
this coefficient for the species of wasps. The value 0 is the a priori specified value
of the parameter, so test null hypothesis Hy : © = 0. The alternative hypothesis
should express the belief that the inbreeding coefficient exceeds 0. Hence, we take
alternative hypothesis Hi : > 0. The value of the test statistic is

L 0.044
0.884/+/197

27.5b Because n = 197 is large, we approximate the distribution of 7" under the
null hypothesis by an N(0,1) distribution. The value ¢ = 0.70 lies to the right of
zero, so the p-value is the right tail probability P(T > 0.70). By means of the normal
approximation we find from Table ?? that the right tail probability

=0.70.

P(T > 0.70) ~ 1 — ®(0.70) = 0.2420.

This means that the value of the test statistic is not very far in the (right) tail of
the distribution and is therefore not to be considered exceptionally large. We do not
reject the null hypothesis.

27.6 The belief that the intercept is zero is put to the test. The alternative hy-
pothesis should represent the belief that the intercept differs from zero. Therefore,
test Hop : @ = 0 against H; : a # 0. The value of the t-test statistic is

a  5.388

to, = — = —— = 2.875.

Sse  1.874
Because H; : a # 0, both small and large values of Ty, are in favor of H;. Therefore,
the right critical value is ¢, _1,o/2 = t5,0.05 = 2.015. The observed value ¢ = 2.875 is
larger than this, so we reject Ho : « = 0 in favor of Hy : a # 0.

27.7a The data are modeled by a simple linear regression model: Y; = a + [z;,
where Y; is the gas consumption and z; is the average outside temperature in the ith
week. Higher gas consumption as a consequence of smaller temperatures corresponds
to B < 0. It is natural to consider the value 0 as the a priori specified value of the
parameter (it corresponds to no change of gas consumption). Therefore, we take null
hypothesis Hp : 3 = 0. The alternative hypothesis should express the belief that the
gas consumption increases as a consequence of smaller temperatures. Hence, we take
alternative hypothesis H; : < 0. The value of the test statistic is

8 —0.3932
=2 =

- = 5.0106 = —20.06.

The test statistic T has a t-distribution with n — 2 = 24 degrees of freedom. The
value —20.06 is smaller than the left critical value t24,0.05 = —1.711, so we reject.

27.7b For the data after insulation, the value of the test statistic is

—0.2779
0.0252 —11.08,

and Tp has a ¢(28) distribution. The value —11.03 is smaller than the left critical
value t28,0.05 = —1.701, so we reject.

ty =
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28.1a Ho: p1 = p2 and Hy : g1 # pe; The value of the test statistic is £, = —2.130.
The critical values are £t142,0.025. These are not in Table 7?7, but 1.96 < t142,0.025 <
2.009, so that we reject the null hypothesis.

28.1b The value of the test statistic is the same (see Exercise 28.4). The nor-
mal approximation yields that the critical values are +1.96. The observed value
tqs = —2.130 is smaller than the left critical value —1.96, so that we reject the null
hypothesis.

28.1 ¢ The observed value t4 = —2.130 is smaller than the left critical value —2.004,
so that we reject the null hypothesis. The salaries differ significantly.

28.2 First consider testing Ho : pu1 = p2 against Hy : p1 # pe. In view of the
observed sample variances, there is no reason to assume equal variances, so compute

2 2
@ s 17T 2533

= o+ e = 0,107,

and
Tn — Ym _ 39.08 — 37.59

Sd 4/0.1071
With sample sizes n1 = 775 and ny = 261 we can use the normal approximation. The
p-value is P(Ty > 4.553) =~ 0, so that we reject Ho : u1 = po in favor of Hy : p1 # po.
The other testing problems are handled in the same way. For testing Ho : pu1 = us
against Hy : 1 # s, we find

2= .77 n 495 _ 0.0178 and ty— 39.08 — 39.60 _ _3.898

775 633 v0.0178

with p-value P(Ty < —3.898) ~ 0, so that we reject Ho : pu1 = ps in favor of

ty = = 4.553.

Hy 2y # ps.
For testing Ho : p2 = ps3 against Hy : pe # ps, we find
25. 4. .59 — 39.
53 = 2533 1495 (11049 and tg = 37:59 = 3960 _ g 906

261 ' 633 v/0.1049
with p-value P(Ty < —6.206) =~ 0, so that we reject Ho : p2 = wps in favor of
Hy ot pz # ps.
28.3 a The value of the test statistic is
t, = 22.43 — 11.01
4.58
Under the assumption of normal data with equal variances, we must compare this

with the right critical value t43,0.025. This is not Table 7?7, but 2.009 < t43,0.025 <
2.021. Hence, t, > t43,0.025, so that we reject the null hypothesis.

28.3b The value t, = 2.492 is greater than the right critical value 1.959, so that
we reject on the basis of the bootstrap simulation.
28.3 ¢ The value of the test statistic is
_ 2243 -11.01
T 464

Without the assumption of equal variances, and using the normal approximation,
we must compare this with the right critical value zo.025 = 1.96. Since t, > 1.96, we
reject the null hypothesis.

= 2.492.

= 2.463.
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28.3d Because we test at level 0.05, we reject if the right tail probability corre-
sponding to tg = 2.463 is smaller than 0.025. Since this is the case, we reject on the
basis of the bootstrap simulation.

28.4 When n = m, then

ﬁzzm—1W§+m—1w%(1+1>

n+n—2 n o n
(n—1)(SXx+5%)2 _S% | S¥ _
=T WX TOY) S PX | PY g2

2(n—1) noon n

28.5a When aS% + bSZ is unbiased for o2, we should have E gasi + bS%] = o2,
Using that S% and S% are both unbiased for o2, i.e., E [SE(] =oc"and E [S%/] =02,
we get

E[aS% +bSy] = aE[SX] + bE[S7] = (a + b)o”.
Hence, E [aSE( + bS}Q/] = o2 for all ¢ > 0 if and only if a + b = 1.
28.5b By independence of §% and SZ write

Var(aSgg +(1- a)S;Q/) = a2Var(S§() +(1- a)QVar(SSQ/)
2 2
a (1-a) 4
——— | 20".
(n -1 * m—1 ) 7
To find the value of a that minimizes this, differentiate with respect to a and put
the derivative equal to zero. This leads to

2a _2(17a)_0
n—1 m—1

Solving for a yields a = (n — 1)/(n + m — 2). Note that the second derivative of
Var (aSgg +(1-— a)S%) is positive so that this is indeed a minimum.

28.6 a By independence of X1, X2,..., X, and Y3,Y>,...,Y,, we have

2 2
Var(X,, — Vi) = Var(X,) + Var(¥V) = 75 4 72X

28.6 b
) n—1DE[S4]+(m—-1DE[S2] /1 1
p[sj] - PR UL ]<;+a)
_ (n=1Dokx+(m—-1oy (1 1
= ntm 2 (E+E)'

In principle this may differ from Var (Xn - Ym) =o%/n+ a3 /m.
28.6 ¢ First note that

E[aS% +bSy] = aE[SX] + bE[SY] = ack + boy.

For unbiasedness this must equal Jg(/n + U%//m for all ox > 0 and oy > 0, with
a, b not depending on ox and oy. This is only possible for a = 1/n and b= 1/m.
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28.6 d From part a together with 0% = 0% = o2, we have

sy - ekt (1, )

1 _
e (=Dt m-) (1+i) _ <1+i>_
n+m-—2 nom nom
28.6 e No, not in general, see part b. If n = m, then according to (the computations
in) Exercise 28.4, Sﬁ = S3. Since, according to part ¢, S3 is always an unbiased

estimfxtor f9r Var(Xn — Ym) it follows that Sﬁ is also an unbiased estimator for
Var (Xn — Ym)A One may also check this as follows:

2 =1k +(m—-1c% (1 1
Bl = n)j—m—Q - ntm
(n= Dok +(n=Do¥ (11

- n+n-—2 non

_ 2 2 n—1 1 1 o 2 2 1_0%( 0'%/
_(UX+Uy) n+n72(n+n)—(ﬂx+0y)n— n + .





